[发明专利]一种基于深度学习算法的空气波压力按摩仪参数优化方法有效

专利信息
申请号: 201811141039.X 申请日: 2018-09-28
公开(公告)号: CN109330846B 公开(公告)日: 2021-03-12
发明(设计)人: 李湛;于淼;洪源铎;杨司臣;高会军;贾译凇;潘惠惠 申请(专利权)人: 哈尔滨工业大学
主分类号: A61H9/00 分类号: A61H9/00;A61B5/021
代理公司: 哈尔滨市松花江专利商标事务所 23109 代理人: 刘冰
地址: 150001 黑龙*** 国省代码: 黑龙江;23
权利要求书: 查看更多 说明书: 查看更多
摘要: 一种基于深度学习算法的空气波压力按摩仪参数优化方法,本发明涉及空气波压力按摩仪参数优化方法。本发明为了解决现有深度学习只训练一次导致准确率低以及重新训练成本高的问题。本发明包括:一:采集用户的血压和脉搏数据;二:在服务器上建立深度学习结构模型;三:得到训练后的深度学习结构模型;四:采集用户的血压和脉搏数据,输入训练后的深度学习结构模型中,根据输出的空气波压力按摩仪参数调整空气波压力按摩仪的按摩力度、按摩频率和按摩部位;五:经过时间T对得到的训练后的深度学习结构模型进行训练,得到新的模型;采用新的模型替换步骤四中训练后的深度学习结构模型,重复执行步骤四。本发明用于医疗技术领域。
搜索关键词: 一种 基于 深度 学习 算法 空气 压力 按摩 参数 优化 方法
【主权项】:
1.一种基于深度学习算法的空气波压力按摩仪参数优化方法,其特征在于:所述基于深度学习算法的空气波压力按摩仪参数优化方法包括以下步骤:步骤一:采集用户的血压和脉搏数据,作为训练集;步骤二:在服务器上建立深度学习结构模型;步骤三:将步骤一的训练集输入步骤二建立的深度学习结构模型中进行训练,得到训练后的深度学习结构模型;步骤四:采集空气波压力按摩仪用户的血压和脉搏数据,输入训练后的深度学习结构模型中,模型输出空气波压力按摩仪参数,根据输出的空气波压力按摩仪参数调整空气波压力按摩仪的按摩力度、按摩频率和按摩部位,所述空气波压力按摩仪参数包括按摩力度、按摩频率和按摩部位;同时服务器保存采集的空气波压力按摩仪用户的血压和脉搏数据和模型输出的空气波压力按摩仪参数;步骤五:经过时间T采用步骤四中服务器保存的空气波压力按摩仪用户的血压和脉搏数据和模型输出的空气波压力按摩仪参数,对得到的训练后的深度学习结构模型进行训练,得到新的模型;采用新的模型替换步骤四中训练后的深度学习结构模型,重复执行步骤四。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于哈尔滨工业大学,未经哈尔滨工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201811141039.X/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top