[发明专利]一种基于KPCA-BAS-GRNN的埋地管道外腐蚀速率预测方法有效
申请号: | 201811143056.7 | 申请日: | 2018-09-28 |
公开(公告)号: | CN109255490B | 公开(公告)日: | 2022-03-22 |
发明(设计)人: | 骆正山;姚梦月;骆济豪;王小完;田珮琦;秦越;黄仁惠 | 申请(专利权)人: | 西安建筑科技大学 |
主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06Q10/06;G06F30/27;G01N27/416;G06F119/04;G06F113/14 |
代理公司: | 西安通大专利代理有限责任公司 61200 | 代理人: | 徐文权 |
地址: | 710055 陕*** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于KPCA‑BAS‑GRNN的埋地管道外腐蚀速率预测方法,包括以下步骤:将管道外腐蚀指标体系的数据分为训练样本及测试样本,再通过训练样本对广义回归神经网络的腐蚀预测模型进行训练,并采用天牛须搜索算法优化腐蚀预测模型的光滑因子σ,然后将测试样本输入到训练后的广义回归神经网络的腐蚀预测模型中,得预测值,再根据预测值及实测值判断训练后广义回归神经网络的腐蚀预测模型的优劣性,当训练后广义回归神经网络的腐蚀预测模型较优时,则将待预测埋地管道外腐蚀的检测数据输入到训练后的广义回归神经网络的腐蚀预测模型中,得埋地管道的外腐蚀速率,该方法能够实现管道腐蚀速率的预测,并且可靠性较高。 | ||
搜索关键词: | 一种 基于 kpca bas grnn 管道 腐蚀 速率 预测 方法 | ||
【主权项】:
1.一种基于KPCA‑BAS‑GRNN的埋地管道外腐蚀速率预测方法,其特征在于,包括以下步骤:1)获取埋地管道外腐蚀的检测数据,再根据埋地管道外腐蚀的检测数据构建管道外腐蚀指标体系;2)构建广义回归神经网络的腐蚀预测模型;3)将步骤1)得到的管道外腐蚀指标体系的数据分为训练样本及测试样本,再通过训练样本对广义回归神经网络的腐蚀预测模型进行训练,并采用天牛须搜索算法优化腐蚀预测模型的光滑因子σ,然后将测试样本输入到训练后的广义回归神经网络的腐蚀预测模型中,得预测值,再根据预测值及实测值判断训练后广义回归神经网络的腐蚀预测模型的优劣性,当训练后广义回归神经网络的腐蚀预测模型较优时,则将待预测埋地管道外腐蚀的检测数据输入到训练后的广义回归神经网络的腐蚀预测模型中,得埋地管道的外腐蚀速率,当训练后的广义回归神经网络的腐蚀预测模型较劣时,则转至步骤1)中。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安建筑科技大学,未经西安建筑科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811143056.7/,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06 计算;推算;计数
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理