[发明专利]一种基于深度多尺度神经网络的语义分割方法有效

专利信息
申请号: 201811146434.7 申请日: 2018-09-27
公开(公告)号: CN109543502B 公开(公告)日: 2023-06-06
发明(设计)人: 庞彦伟;贾大宇 申请(专利权)人: 天津大学
主分类号: G06V20/56 分类号: G06V20/56;G06V20/58;G06T7/11;G06V10/82;G06N3/0464;G06N3/048;G06N3/084
代理公司: 天津市北洋有限责任专利代理事务所 12201 代理人: 程毓英
地址: 300072*** 国省代码: 天津;12
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明涉及一种基于深度多尺度神经网络的语义分割方法,包括下列步骤:收集包含各种不同类别物体的图像,并标注每张图像中的所有感兴趣物体,标注内容每个像素点的所属物体类别,以其作为图像标签信息;图像集划分;将收集的图像划分为训练集,验证集和测试集,训练集用于训练卷积神经网络,验证集用于选择最佳的训练模型,测试集为后续测试模型效果或者实际应用时使用;设计基于深度多尺度神经网络结构,用以有效实现物体检测,输入数据,前向计算预测结果和损失代价,通过反向传播算法计算参数的梯度并更新参数;迭代的更新参数,待代价函数曲线收敛时,模型训练完毕。
搜索关键词: 一种 基于 深度 尺度 神经网络 语义 分割 方法
【主权项】:
1.一种基于深度多尺度神经网络的语义分割方法,包括下列步骤:1)收集包含各种不同类别物体的图像,并标注每张图像中的所有感兴趣物体,标注内容每个像素点的所属物体类别,以其作为图像标签信息;2)图像集划分;将收集的图像划分为训练集,验证集和测试集,训练集用于训练卷积神经网络,验证集用于选择最佳的训练模型,测试集为后续测试模型效果或者实际应用时使用;3)设计基于深度多尺度神经网络结构,用以有效实现物体检测,包括:①设计主干网络;②设计语义分割网络:语义分割网络由三个3×3的卷积神经网络串联而成,采用bottleneck的结构,在每个3×3的卷积层前后分别加1×1的卷积层,前边的用来提高特征图的通道数,后边的用来降低特征图的通道数,采用dense结构连接3×3卷积层;③设计解码网络:将语义分割网络的输出上采样,与主干网络中的低层级语义特征相加后通过一个3×3的卷积层再上采样,得到最终的分割结果;④选择合适的损失函数,设置训练迭代次数,初始化参数;4)输入数据,前向计算预测结果和损失代价,通过反向传播算法计算参数的梯度并更新参数;迭代的更新参数,待代价函数曲线收敛时,模型训练完毕;5)将训练好的模型应用于测试或实际应用中,当输入图像时,通过该模型可以计算得到图像语义分割结果,辅助实际应用场景中的决策。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于天津大学,未经天津大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201811146434.7/,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top