[发明专利]一种基于密度的参数自适应聚类方法在审
申请号: | 201811152715.3 | 申请日: | 2018-09-29 |
公开(公告)号: | CN109271424A | 公开(公告)日: | 2019-01-25 |
发明(设计)人: | 黄梦醒;张雨;冯文龙;沈亮亮;鲍琦莉 | 申请(专利权)人: | 海南大学 |
主分类号: | G06F16/2458 | 分类号: | G06F16/2458;G06F16/28;G06K9/62 |
代理公司: | 北京科亿知识产权代理事务所(普通合伙) 11350 | 代理人: | 赵蕊红 |
地址: | 570228 海*** | 国省代码: | 海南;46 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于密度的参数自适应聚类方法,涉及数据挖掘技术领域。该方法包括以下步骤:S1、数据集的预处理:输入待处理的数据集,利用预设的滑动窗口截取数据流,对截取的单元数据进行预处理以得到训练数据;S2、训练数据的模型训练和优化:对所述训练数据进行聚类,以得到所述训练数据的独立的簇和簇中心;将所有的簇进行模型训练,并将训练后的簇进行优化选择以得到优选参数,再将优优选参数的簇进行训练,以得到模型组;S3、模型匹配:将测试数据与所有的簇中心进行相似度匹配,得到最相似的簇中心对应的簇,以获得与该簇对应的相似模型;S4、预测分析:根据所述相似模型计算所述测试数据,以得到所述测试数据的预测值。 | ||
搜索关键词: | 训练数据 测试数据 聚类 预处理 参数自适应 模型训练 数据集 截取 优选 数据挖掘技术 相似度匹配 数据流 单元数据 滑动窗口 模型计算 模型匹配 优化选择 模型组 预测 预设 优化 分析 | ||
【主权项】:
1.一种基于密度的参数自适应聚类方法,其特征在于,包括以下步骤:S1、数据集的预处理:输入待处理的数据集,利用预设的滑动窗口截取数据流,对截取的单元数据进行预处理以得到训练数据;S2、训练数据的模型训练和优化:对所述训练数据进行聚类,以得到所述训练数据的独立的簇和簇中心;将所有的簇进行模型训练,并将训练后的簇进行优化选择以得到优选参数,再将优优选参数的簇进行训练,以得到模型组;S3、模型匹配:将测试数据与所有的簇中心进行相似度匹配,得到最相似的簇中心对应的簇,以获得与该簇对应的相似模型;S4、预测分析:根据所述相似模型计算所述测试数据,以得到所述测试数据的预测值。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于海南大学,未经海南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811152715.3/,转载请声明来源钻瓜专利网。