[发明专利]基于鲁棒策略的地铁列车轨迹的实时预测方法在审

专利信息
申请号: 201811162165.3 申请日: 2015-03-31
公开(公告)号: CN109255495A 公开(公告)日: 2019-01-22
发明(设计)人: 韩云祥;黄晓琼 申请(专利权)人: 江苏理工学院
主分类号: G06Q10/04 分类号: G06Q10/04;G06Q50/30
代理公司: 常州市江海阳光知识产权代理有限公司 32214 代理人: 陆文俊
地址: 213001 江苏*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明涉及一种基于鲁棒策略的地铁列车轨迹的实时预测方法,包括如下步骤:先根据各个列车的计划运行参数,生成轨道交通网络的拓扑结构图;再基于拓扑结构图,分析列车流的可控性和敏感性;再根据各个列车的计划运行参数,生成多列车无冲突运行轨迹;再在每一采样时刻,基于列车当前的运行状态和历史位置观测序列,对列车未来某时刻的行进位置进行预测。该方法对地铁列车的轨迹预测精度较高。
搜索关键词: 列车 地铁列车 拓扑结构图 实时预测 运行参数 鲁棒 采样时刻 观测序列 轨道交通 轨迹预测 历史位置 行进位置 运行轨迹 运行状态 可控性 无冲突 预测 网络 分析
【主权项】:
1.一种基于鲁棒策略的地铁列车轨迹的实时预测方法,其特征在于包括如下步骤:步骤A、根据各个列车的计划运行参数,生成轨道交通网络的拓扑结构图;步骤B、基于步骤A所构建的轨道交通网络的拓扑结构图,分析列车流的可控性和敏感性二类特性;步骤C、根据各个列车的计划运行参数,在构建列车动力学模型的基础上,依据列车运行冲突耦合点建立列车运行冲突预调配模型,生成多列车无冲突运行轨迹;具体过程如下:步骤C1、列车状态转移建模,列车沿轨道交通路网运行的过程表现为在站点间的动态切换过程,根据列车运行计划中的站点设置,建立单个列车在不同站点间切换转移的Petri网模型:E=(g,G,Pre,Post,m)为列车路段转移模型,其中g表示站点间各子路段,G表示列车运行速度状态参数的转换点,Pre和Post分别表示各子路段和站点间的前后向连接关系,表示列车所处的运行路段,其中m表示模型标识,Z+表示正整数集合;步骤C2、列车全运行剖面混杂系统建模,将列车在站点间的运行视为连续过程,从列车的受力情形出发,依据能量模型推导列车在不同运行阶段的动力学方程,结合外界干扰因素,建立关于列车在某一运行阶段速度vG的映射函数vG=λ(T1,T2,H,R,α),其中T1、T2、H、R和α分别表示列车牵引力、列车制动力、列车阻力、列车重力和列车状态随机波动参数;步骤C3、采用混杂仿真的方式推测求解列车轨迹,通过将时间细分,利用状态连续变化的特性递推求解任意时刻列车在某一运行阶段距初始停靠位置点的距离,其中J0为初始时刻列车距初始停靠位置点的航程,△τ为时间窗的数值,J(τ)为τ时刻列车距初始停靠位置点的路程,由此可以推测得到单列车轨迹;步骤C4、列车在站时间概率分布函数建模,针对特定运行线路,通过调取列车在各车站的停站时间数据,获取不同线路不同站点条件下列车的停站时间概率分布;步骤C5、多列车耦合的无冲突鲁棒轨迹调配,根据各列车预达冲突点的时间,通过时段划分,在每一采样时刻t,在融入随机因子的前提下,按照调度规则对冲突点附近不满足安全间隔要求的列车轨迹实施鲁棒二次规划;步骤D、在每一采样时刻t,基于列车当前的运行状态和历史位置观测序列,对列车未来某时刻的行进位置进行预测;其具体过程如下:步骤D1、列车轨迹数据预处理,以列车在起始站的停靠位置为坐标原点,在每一采样时刻,依据所获取的列车原始离散二维位置序列x=[x1,x2,...,xn]和y=[y1,y2,...,yn],采用一阶差分方法对其进行处理获取新的列车离散位置序列△x=[△x1,△x2,...,△xn‑1]和△y=[△y1,△y2,...,△yn‑1],其中△xi=xi+1‑xi,△yi=yi+1‑yi(i=1,2,...,n‑1);步骤D2、对列车轨迹数据聚类,对处理后新的列车离散二维位置序列△x和△y,通过设定聚类个数M',采用遗传聚类算法分别对其进行聚类;步骤D3、对聚类后的列车轨迹数据利用隐马尔科夫模型进行参数训练,通过将处理后的列车运行轨迹数据△x和△y视为隐马尔科夫过程的显观测值,通过设定隐状态数目N'和参数更新时段τ',依据最近的T'个位置观测值并采用B‑W算法滚动获取最新隐马尔科夫模型参数λ';具体来讲:由于所获得的列车轨迹序列数据长度是动态变化的,为了实时跟踪列车轨迹的状态变化,有必要在初始轨迹隐马尔科夫模型参数λ'=(π,A,B)的基础上对其重新调整,以便更精确地推测列车在未来某时刻的位置;每隔时段τ',依据最新获得的T'个观测值(o1,o2,...,oT')对轨迹隐马尔科夫模型参数λ'=(π,A,B)进行重新估计;步骤D4、依据隐马尔科夫模型参数,采用Viterbi算法获取当前时刻观测值所对应的隐状态q;步骤D5、每隔时段根据最新获得的隐马尔科夫模型参数λ'=(π,A,B)和最近H个历史观测值(o1,o2,...,oH),基于列车当前时刻的隐状态q,在时刻t,通过设定预测时域h',获取未来时段列车的位置预测值O,从而在每一采样时刻滚动推测到未来时段内地铁列车的轨迹。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于江苏理工学院,未经江苏理工学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201811162165.3/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top