[发明专利]基于K-means聚类的铁路突发事件分级预警方法有效
申请号: | 201811191236.2 | 申请日: | 2018-10-12 |
公开(公告)号: | CN109242209B | 公开(公告)日: | 2022-03-15 |
发明(设计)人: | 王莉;王铭铭;秦勇;贾利民;张惠茹;郭建媛;徐杰;程晓卿 | 申请(专利权)人: | 北京交通大学 |
主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06Q50/30;G06F16/28;G06F16/215 |
代理公司: | 北京市商泰律师事务所 11255 | 代理人: | 黄晓军 |
地址: | 100044 北*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供了一种基于K‑means聚类的铁路突发事件分级预警方法。该方法包括:对历史铁路突发事件影响数据进行特征分析与数据清洗,获取训练数据集;确定聚类中心数,基于K‑means算法对所述训练数据集进行聚类,根据聚类结果获取各级铁路突发事件的样本数据特征;将当前铁路突发事件的数据特征与所述各级铁路突发事件的样本数据特征进行比较,根据比较结果确定所述当前铁路突发事件的突发事件等级。本发明的方法采用数据挖掘机器学习理论,避免主观决策,对铁路突发事件影响动态定量评估分级。实验结果表明该方法能够合理有效解决突发事件影响分级预警,实用性好。 | ||
搜索关键词: | 基于 means 铁路 突发事件 分级 预警 方法 | ||
【主权项】:
1.一种基于K‑means聚类的铁路突发事件分级预警方法,其特征在于,包括:对历史铁路突发事件影响数据进行特征分析与数据清洗,获取训练数据集;确定聚类中心数,基于K‑means算法对所述训练数据集进行聚类,根据聚类结果获取各级铁路突发事件的样本数据特征;将当前铁路突发事件的数据特征与所述各级铁路突发事件的样本数据特征进行比较,根据比较结果确定所述当前铁路突发事件的突发事件等级。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京交通大学,未经北京交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811191236.2/,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06 计算;推算;计数
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理