[发明专利]一种基于卷积神经网络的图像配准方法在审

专利信息
申请号: 201811193622.5 申请日: 2018-10-15
公开(公告)号: CN109544610A 公开(公告)日: 2019-03-29
发明(设计)人: 吕卫;赵薇;褚晶辉 申请(专利权)人: 天津大学
主分类号: G06T7/33 分类号: G06T7/33
代理公司: 天津市北洋有限责任专利代理事务所 12201 代理人: 李林娟
地址: 300072*** 国省代码: 天津;12
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于卷积神经网络的图像配准方法,所述方法包括以下步骤:利用VGG‑16卷积网络对参考图像、移动图像分别提取特征点,以此生成参考特征点集以及移动特征点集;当特征点的距离矩阵同时满足第一、第二约束条件时,执行预匹配操作,即所述参考特征点集中的特征点x、与所述移动特征点集中的特征点y是匹配点;设置某一阈值,结合迭代对预匹配后的特征点进行动态的内点选择,筛选出最终的特征点,并获取先验概率矩阵;根据先验概率矩阵、EM算法寻找最优参数,实现图像配准。本发明在特征点匹配时通过动态内点选择动态地逐步增加内点,提高了配准准确率。
搜索关键词: 特征点 图像配准 内点 矩阵 卷积神经网络 参考特征 先验概率 移动特征 点集 配准准确率 特征点匹配 参考图像 距离矩阵 匹配操作 提取特征 移动图像 约束条件 逐步增加 最优参数 动态的 匹配点 迭代 卷积 匹配 筛选 网络
【主权项】:
1.一种基于卷积神经网络的图像配准方法,其特征在于,所述方法包括以下步骤:利用VGG‑16卷积网络对参考图像、移动图像分别提取特征点,以此生成参考特征点集以及移动特征点集;当特征点的距离矩阵同时满足第一、第二约束条件时,执行预匹配操作,即所述参考特征点集中的特征点x、与所述移动特征点集中的特征点y是匹配点;设置某一阈值,结合迭代对预匹配后的特征点进行动态的内点选择,筛选出最终的特征点,并获取先验概率矩阵;根据先验概率矩阵、EM算法寻找最优参数,实现图像配准。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于天津大学,未经天津大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201811193622.5/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top