[发明专利]一种异常检测的解释特征确定方法和装置在审
申请号: | 201811208609.2 | 申请日: | 2018-10-17 |
公开(公告)号: | CN109583470A | 公开(公告)日: | 2019-04-05 |
发明(设计)人: | 方文静 | 申请(专利权)人: | 阿里巴巴集团控股有限公司 |
主分类号: | G06K9/62 | 分类号: | G06K9/62 |
代理公司: | 北京博思佳知识产权代理有限公司 11415 | 代理人: | 林祥 |
地址: | 英属开曼群岛大开*** | 国省代码: | 开曼群岛;KY |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本说明书实施例提供一种异常检测的解释特征确定方法和装置,其中,方法可以包括:对于输入异常检测模型的一个样本,所述样本包括至少一个样本特征,根据每个样本特征的分布参数确定所述样本特征的偏移度;所述分布参数用于表示该样本特征在所述异常检测模型的训练集数据中的分布特点;所述异常检测模型是无监督模型;根据所述样本中的各个样本特征的偏移度,确定至少一个样本特征作为所述样本对应的解释特征,所述解释特征用于解释所述样本与对应的所述异常检测模型的模型输出结果之间的关联。 | ||
搜索关键词: | 样本特征 样本 异常检测模型 方法和装置 分布参数 特征确定 异常检测 偏移度 训练集数据 分布特点 输出结果 输入异常 无监督 关联 检测 | ||
【主权项】:
1.一种异常检测的解释特征确定方法,所述方法包括:对于输入异常检测模型的一个样本,所述样本包括至少一个样本特征,根据每个样本特征的分布参数确定所述样本特征的偏移度;所述分布参数用于表示该样本特征在所述异常检测模型的训练集数据中的分布特点;所述异常检测模型是无监督模型;根据所述样本中的各个样本特征的偏移度,确定至少一个样本特征作为所述样本对应的解释特征,所述解释特征用于解释所述样本与对应的所述异常检测模型的模型输出结果之间的关联。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于阿里巴巴集团控股有限公司,未经阿里巴巴集团控股有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811208609.2/,转载请声明来源钻瓜专利网。