[发明专利]一种基于近邻成分分析的故障类型识别方法有效
申请号: | 201811213325.2 | 申请日: | 2018-10-09 |
公开(公告)号: | CN109409425B | 公开(公告)日: | 2021-06-15 |
发明(设计)人: | 皇甫皓宁;童楚东;朱莹 | 申请(专利权)人: | 宁波大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 315211 浙江省宁波*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开一种基于近邻成分分析的故障类型识别方法,旨在为各故障类型甄别出相应的故障特征变量及其权重大小后,实施在线故障数据对应故障类型的识别。具体来讲,本发明方法首先利用近邻成分分析这种依赖于单个样本之间近邻关系的算法,逐个找出各故障类型可用数据对比正常工况数据之间出现异常变化的特征变量及其权重系数。其次,在经特征变量加权处理后逐个计算在线故障数据与各个故障类型数据点的之间的距离。最后,通过最小距离识别故障类型。与传统方法相比,本发明方法不仅利用了各故障的特征变量而且还能区分出特征变量之间的重要性程度差异,能充分保证故障类型识别的正确率。因此,本发明方法是一种更为优选的故障类型识别方法。 | ||
搜索关键词: | 一种 基于 近邻 成分 分析 故障 类型 识别 方法 | ||
【主权项】:
1.一种基于近邻成分分析的故障类型识别方法,其特征在于,包括以下步骤:步骤(1)从生产过程历史数据库中找到不同故障工况条件下的采样数据,对应组成各参考故障的数据矩阵X1,X2,…,XC,其中Nc为第c种故障的可用样本数,c=1,2,…,C,R为实数集,表示Nc×m维的实数矩阵,m为过程测量变量的个数,C为参考故障类别总数;步骤(2)采集生产过程处于正常运行工况下的N0个样本数据,组成正常工况训练数据矩阵并计算矩阵X0中各列向量的均值μ1,μ2,…,μm与标准差δ1,δ2,…,δm;步骤(3)利用均值μ1,μ2,…,μm与标准差δ1,δ1,…,δm分别标准化处理X0,X1,X2…,XC中对应的各列向量,得到标准化后的数据矩阵并初始化c=1;步骤(4)将矩阵与合并一个矩阵并构建类标号向量其中上标号T为矩阵或向量的转置符号,向量yc中前N0个元素数值全部为0后Nc个元素数值全部等于1;步骤(5)利用近邻成分分析(NCA)算法优化求解出权重系数向量wc;步骤(6)将权重系数向量wc中小于10‑3的元素全部变成零,得到更新后的权重系数向量那么向量中不等于0的元素所对应的变量即为第c类参考故障的特征变量;步骤(7)根据公式计算得到第c类参考故障数据经特征变量加权后的数据矩阵Fc,其中表示将向量中的各元素组成对角矩阵的操作;步骤(8)判断是否满足条件c<C?若是,则置c=c+1后返回步骤(4);若否,则得到最终的权重系数向量以及矩阵F1,F2,…,FC;步骤(9)当在线监测的数据样本x∈R1×m被已有的故障检测系统判别为故障数据后,根据步骤(2)中的均值μ1,μ2,…,μm与标准差δ1,δ2,…,δm标准化处理向量x得到向量步骤(10)根据公式将向量分别经加权处理,对应得到加权向量g1,g2,…,gC;步骤(11)计算向量g1,g2,…,gC与矩阵F1,F2,…,FC中各行向量的之间的距离,并找出最小距离样本所对应的故障类型,该故障类型即为识别出的故障类型。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于宁波大学,未经宁波大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811213325.2/,转载请声明来源钻瓜专利网。