[发明专利]一种用于卷积神经网络加速器的拆分累加器有效

专利信息
申请号: 201811214639.4 申请日: 2018-10-18
公开(公告)号: CN109543830B 公开(公告)日: 2023-02-03
发明(设计)人: 李晓维;魏鑫;路航 申请(专利权)人: 中国科学院计算技术研究所
主分类号: G06N3/063 分类号: G06N3/063;G06N3/04
代理公司: 北京律诚同业知识产权代理有限公司 11006 代理人: 祁建国;梁挥
地址: 100080 北*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明涉及一种用于卷积神经网络加速器的拆分累加器,用于将原始权重按计算顺序排列并按位对齐,得到权重矩阵,剔除权重矩阵中的松弛位,得到具有空位的精简矩阵,并使得精简矩阵的每一列中的基本位按计算顺序递补空位,得到中间矩阵,剔除中间矩阵中的空行,并将中间矩阵的空位置0,得到捏合矩阵,捏合矩阵的每一行作为捏合权重;根据激活值与原始权重中基本位的对应关系,得到捏合权重中每一位对应激活值的位置信息;将捏合权重送入拆分累加器,拆分累加器将捏合权重按位分割为多个权重段,根据位置信息,将权重段与对应的激活值进行求和处理,并将处理结果发送至加法树,通过对处理结果执行移位相加,得到输出特征图。
搜索关键词: 一种 用于 卷积 神经网络 加速器 拆分 累加器
【主权项】:
1.一种用于卷积神经网络加速器的拆分累加器,其特征在于,包括:权重捏合模块,用于获取多组待运算的激活值及其对应的原始权重,将该原始权重按计算顺序排列并按位对齐,得到权重矩阵,剔除该权重矩阵中的松弛位,得到具有空位的精简矩阵,并使得该精简矩阵的每一列中的基本位按该计算顺序递补该空位,得到中间矩阵,剔除该中间矩阵中的空行,并将该中间矩阵的空位置0,得到捏合矩阵,该捏合矩阵的每一行作为捏合权重;拆分累加模块,用于根据激活值与原始权重中基本位的对应关系,得到该捏合权重中每一位对应激活值的位置信息,将该捏合权重按位分割为多个权重段,根据该位置信息,将该权重段与对应的激活值进行求和处理,并将处理结果发送至加法树,通过对该处理结果执行移位相加,得到输出特征图。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院计算技术研究所,未经中国科学院计算技术研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201811214639.4/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top