[发明专利]一种基于多维度状态转移矩阵特征的DDos识别方法和系统有效
申请号: | 201811239423.3 | 申请日: | 2018-10-23 |
公开(公告)号: | CN109450876B | 公开(公告)日: | 2020-12-22 |
发明(设计)人: | 曹自刚;扶佩佩;管洋洋;侯江畔 | 申请(专利权)人: | 中国科学院信息工程研究所 |
主分类号: | H04L29/06 | 分类号: | H04L29/06;G06N20/00 |
代理公司: | 北京君尚知识产权代理有限公司 11200 | 代理人: | 邱晓锋 |
地址: | 100093 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及一种基于多维度状态转移矩阵特征的DDos识别方法和系统。该方法包括:1)采集网络流元数据,并标注DDos流量与正常流量;2)利用采集并标注的网络流元数据,基于状态转移矩阵提取DDos的多维度特征;3)利用提取的多维度特征,采用机器学习算法训练分类模型;4)将待测的网络流数据按照步骤2)提取多维度特征,输入到步骤3)训练得到的分类模型中,获得DDos识别结果。本发明提取出可以有效刻画不同DDos攻击手法的网络行为特征,结合机器学习算法训练学习,在对场景先验知识较少的情况下,能够既准又全的识别DDos攻击。 | ||
搜索关键词: | 一种 基于 多维 状态 转移 矩阵 特征 ddos 识别 方法 系统 | ||
【主权项】:
1.一种基于多维度状态转移矩阵特征的DDos识别方法,其特征在于,包括以下步骤:1)采集网络流元数据,并标注DDos流量与正常流量;2)利用采集并标注的网络流元数据,基于状态转移矩阵提取DDos的多维度特征;3)利用提取的多维度特征,采用机器学习算法训练分类模型;4)将待测的网络流数据按照步骤2)提取多维度特征,输入到步骤3)训练得到的分类模型中,获得DDos识别结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院信息工程研究所,未经中国科学院信息工程研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811239423.3/,转载请声明来源钻瓜专利网。