[发明专利]视网膜OCT体数据识别方法及装置有效
申请号: | 201811249854.8 | 申请日: | 2018-10-25 |
公开(公告)号: | CN109583297B | 公开(公告)日: | 2020-10-02 |
发明(设计)人: | 孙延奎;邱嘉铭 | 申请(专利权)人: | 清华大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62 |
代理公司: | 北京路浩知识产权代理有限公司 11002 | 代理人: | 王莹;李相雨 |
地址: | 100084 北京市海*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明实施例提供一种视网膜OCT体数据识别方法及装置,其中方法包括:获取待识别图像,对待识别图像进行处理,获得目标待识别图像,目标待识别图像为视网膜OCT体数据的多个二维切片图像;根据目标卷积神经网络对目标待识别图像进行识别,获得目标待识别图像的识别结果;根据待识别图像的每个目标待识别图像的识别结果,给出待识别图像的识别结果。本发明实施例利用自监督迭代学习的方法,先利用初始标签和训练样本训练卷积神经网络,再对训练样本图像进行重新分类,并结合聚类或阈值过滤等方法对训练样本图像进行重标签;反复迭代训练与重标签的流程,得到目标卷积神经网络,从而能够在仅有三维级别标签的图像的条件下,提高识别准确率。 | ||
搜索关键词: | 视网膜 oct 数据 识别 方法 装置 | ||
【主权项】:
1.一种视网膜OCT体数据识别方法,其特征在于,包括:获取待识别图像,所述待识别图像为视网膜OCT体数据图像;对所述待识别图像进行处理,获得目标待识别图像,所述目标待识别图像为视网膜OCT体数据的多个二维切片图像;根据目标卷积神经网络对所述目标待识别图像进行识别,获得所述目标待识别图像的识别结果;根据待识别图像的每个目标待识别图像的识别结果,给出待识别图像的识别结果;所述待识别图像的识别结果用于表征待识别图像为正常或异常,所述目标卷积神经网络是基于样本二维切片图像、对应的识别结果标签和基于自监督迭代学习的卷积神经网络训练算法预先训练得到。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于清华大学,未经清华大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811249854.8/,转载请声明来源钻瓜专利网。
- 数据显示系统、数据中继设备、数据中继方法、数据系统、接收设备和数据读取方法
- 数据记录方法、数据记录装置、数据记录媒体、数据重播方法和数据重播装置
- 数据发送方法、数据发送系统、数据发送装置以及数据结构
- 数据显示系统、数据中继设备、数据中继方法及数据系统
- 数据嵌入装置、数据嵌入方法、数据提取装置及数据提取方法
- 数据管理装置、数据编辑装置、数据阅览装置、数据管理方法、数据编辑方法以及数据阅览方法
- 数据发送和数据接收设备、数据发送和数据接收方法
- 数据发送装置、数据接收装置、数据收发系统、数据发送方法、数据接收方法和数据收发方法
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置