[发明专利]一种面向树木激光点云的有效特征抽取与树种识别方法有效
申请号: | 201811263570.4 | 申请日: | 2018-10-28 |
公开(公告)号: | CN109446986B | 公开(公告)日: | 2021-09-24 |
发明(设计)人: | 云挺;卢晓艺;曹林;薛联凤 | 申请(专利权)人: | 南京林业大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62;G06T5/00 |
代理公司: | 北京科亿知识产权代理事务所(普通合伙) 11350 | 代理人: | 王清义 |
地址: | 210037 *** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种面向树木激光点云的有效特征抽取与树种识别方法,包括:获取目标树的全覆盖点云数据;对目标树的全覆盖点云数据进行降噪处理以去除异常点;根据降噪后获得的点云数据分别分析目标树的三种类别的树木特征;抽取基于树木相对聚类特征的最优特征参数组;抽取基于点云分布特征的最优特征参数组;抽取基于树木表观特征的最优特征参数组;将三种类别的树木特征的最优特征参数组进行组合并作为变量输入到SVM分类器中进行树种分类。本发明达到了较高的树种分类精度,为获得更准确的森林树种分布提供了强有力的工具,减少了野外实体调查的高成本、费时、费力,减少了人工判读带来的误差。 | ||
搜索关键词: | 一种 面向 树木 激光 有效 特征 抽取 树种 识别 方法 | ||
【主权项】:
1.一种面向树木激光点云的有效特征抽取与树种识别方法,其特征在于,包括:步骤1:获取目标树的全覆盖点云数据;步骤2:对目标树的全覆盖点云数据进行降噪处理以去除异常点;步骤3:根据降噪后获得的点云数据分别分析目标树的三种类别的树木特征,所述三种类别的树木特征分别为树木相对聚类特征、点云分布特征和树木表观特征,从而获得多个树木相对聚类特征参数、多个点云分布特征参数和多个树木表观特征参数;步骤4:将所有树木相对聚类特征参数按类别分别进行交叉组合,将得到的所有组合方式作为SVM分类器的输入变量进行分类,获得所有组合方式的分类精度,根据分类精度抽取基于树木相对聚类特征的最优特征参数组;将所有点云分布特征参数进行交叉组合,将得到的所有组合方式作为SVM分类器的输入变量进行分类,获得所有组合方式的分类精度,根据分类精度抽取基于点云分布特征的最优特征参数组;将所有树木表观特征参数进行交叉组合,将得到的组合方式作为SVM分类器的输入变量进行分类,获得所有组合方式的分类精度,根据分类精度抽取基于树木表观特征的最优特征参数组;步骤5:将基于树木相对聚类特征的最优特征参数组、基于点云分布特征的最优特征参数组以及基于树木表观特征的最优特征参数组进行组合并作为变量输入到SVM分类器中进行树种分类。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京林业大学,未经南京林业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811263570.4/,转载请声明来源钻瓜专利网。