[发明专利]一种基于深度学习的代码缺陷检测方法及装置有效
申请号: | 201811278355.1 | 申请日: | 2018-10-30 |
公开(公告)号: | CN109408389B | 公开(公告)日: | 2020-10-16 |
发明(设计)人: | 计卫星;高玉金;王一拙;杨恬;石剑君;石峰 | 申请(专利权)人: | 北京理工大学 |
主分类号: | G06F11/36 | 分类号: | G06F11/36 |
代理公司: | 北京慕达星云知识产权代理事务所(特殊普通合伙) 11465 | 代理人: | 姜海荣 |
地址: | 100081 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及一种基于深度学习的代码缺陷检测方法及装置,选取多个代码缺陷检测工具,分别对被检测代码进行检测,相应生成多个检测结果;将所述被检测代码通过预设的转换方法,转换为所述被检测代码的特征向量;所述特征向量包括所述被检测代码的结构特征和语义特征;将所述特征向量分别输入多个所述代码缺陷检测工具各自相对应的评估模型,输出多个所述代码缺陷检测工具分别对所述被检测代码检测缺陷结果的置信度;并结合检测工具对被检测代码的检测结果,可以有效判定代码是否真实存在某种缺陷,能够解决现有代码缺陷检测中误报较高的问题,有效提升代码审查的工作效率。 | ||
搜索关键词: | 一种 基于 深度 学习 代码 缺陷 检测 方法 装置 | ||
【主权项】:
1.一种基于深度学习的代码缺陷检测方法,其特征在于,包括:选取多个代码缺陷检测工具,分别对被检测代码进行检测,相应生成多个检测结果;将所述被检测代码通过预设的转换方法,转换为所述被检测代码的特征向量;所述特征向量包括所述被检测代码的结构特征和语义特征;将所述特征向量分别输入多个所述代码缺陷检测工具各自相对应的评估模型,输出多个所述代码缺陷检测工具分别对所述被检测代码检测缺陷结果的置信度;将多个所述检测结果和多个所述置信度,进行加权求和生成预测结果;当所述预测结果大于预设阈值时,确定所述被检测代码存在缺陷。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京理工大学,未经北京理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811278355.1/,转载请声明来源钻瓜专利网。