[发明专利]一种基于块循环稀疏矩阵的神经网络加速系统有效
申请号: | 201811284262.X | 申请日: | 2018-10-30 |
公开(公告)号: | CN109472350B | 公开(公告)日: | 2021-11-16 |
发明(设计)人: | 潘红兵;秦子迪;朱志炜;郭良蛟;查弈;陈轩;沈庆宏 | 申请(专利权)人: | 南京大学 |
主分类号: | G06N3/04 | 分类号: | G06N3/04;G06N3/063 |
代理公司: | 南京汇盛专利商标事务所(普通合伙) 32238 | 代理人: | 陈扬;吴扬帆 |
地址: | 210046 江苏省南*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及基于块循环稀疏矩阵的神经网络加速系统,包括:可扩展的处理单元阵列,存储有神经网络的部分权值,对压缩的网络进行解码和运算;主控制器主要负责对运算流程的控制;激励分发单元,在主控制器的控制下,向可扩展的处理单元阵列分发非零的运算数据。有益效果为:有效利用了块循环稀疏矩阵的特点,减轻了稀疏矩阵向量乘运算负载不均衡的问题,提高运算单元利用率;通过利用激励和权重的稀疏性,减少了片上存储的使用,跳过了冗余的运算,从而提高硬件加速器的吞吐率,满足处理深度神经网络的实时性要求。 | ||
搜索关键词: | 一种 基于 循环 稀疏 矩阵 神经网络 加速 系统 | ||
【主权项】:
1.一种基于块循环稀疏矩阵的神经网络加速系统,其特征在于包括:可扩展的处理单元阵列,存储有神经网络的部分权值,对压缩的网络进行解码和运算;主控制器主要负责对运算流程的控制;激励分发单元,在主控制器的控制下,向可扩展的处理单元阵列分发非零的运算数据。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京大学,未经南京大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811284262.X/,转载请声明来源钻瓜专利网。