[发明专利]一种基于卷积神经网络的深度感知显著性检测方法有效
申请号: | 201811294279.3 | 申请日: | 2018-11-01 |
公开(公告)号: | CN109409435B | 公开(公告)日: | 2022-07-15 |
发明(设计)人: | 刘志;丁宇;黄梦珂;张俞鹏 | 申请(专利权)人: | 上海大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06V10/70;G06N3/04 |
代理公司: | 上海上大专利事务所(普通合伙) 31205 | 代理人: | 陆聪明 |
地址: | 200444*** | 国省代码: | 上海;31 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于卷积神经网络的深度感知显著性检测方法,具体步骤如下:a.将深度图转化为三通道深度图;b.将三通道深度图和彩色图分别送入彩色显著性网络和深度显著性网络中,得到彩色显著性图和深度显著性图;c.将彩色显著性图和深度显著性图一起送入显著性融合网络中,得到融合显著性图;d.将彩色显著性图和深度显著性图联合训练并计算损失函数loss,以此来训练步骤b和c中的网络,让其拥有更强的特征提取能力。 | ||
搜索关键词: | 一种 基于 卷积 神经网络 深度 感知 显著 检测 方法 | ||
【主权项】:
1.一种基于卷积神经网络的深度感知显著性检测方法,其特征在于,具体步骤如下:a.将深度图转化为三通道深度图;b.将三通道深度图和彩色图分别送入彩色显著性网络和深度显著性网络中,得到彩色显著性图和深度显著性图;c.将彩色显著性图和深度显著性图一起送入显著性融合网络中,得到融合显著性图;d.将彩色显著性图和深度显著性图联合训练并计算损失函数loss,以此来训练步骤b和c中的网络,让其拥有更强的特征提取能力。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于上海大学,未经上海大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811294279.3/,转载请声明来源钻瓜专利网。