[发明专利]基于改进量子粒子群算法的锅炉NOX预测模型优化方法在审
申请号: | 201811297483.0 | 申请日: | 2018-11-01 |
公开(公告)号: | CN109492807A | 公开(公告)日: | 2019-03-19 |
发明(设计)人: | 孟磊;马宁;谷小兵;李广林;李婷彦;马务;宁翔;张妍;王旭光 | 申请(专利权)人: | 大唐环境产业集团股份有限公司 |
主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06Q50/06;G06N3/00 |
代理公司: | 北京君泊知识产权代理有限公司 11496 | 代理人: | 王程远;胡玉章 |
地址: | 100097 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种改进量子粒子群算法的电厂锅炉NOx预测模型优化方法,包括以下步骤,一、对燃煤机组锅炉燃烧系统机理分析,确定NOx排放浓度预测模型的输入变量;二、将余弦递减函数与量子粒子群优化算法相结合,提出改进的量子粒子群算法;三、利用改进的量子粒子群优化算法优化极限学习机的初始参数。以训练数据预测值和实际值的误差绝对值和最小化作为目标,建立准确的NOx排放模型;四、通过仿真验证经过改进量子粒子群算法优化模型精度高于其他方法优化的模型。本发明的优点:通过改进的量子粒子群算法可以高效快速的计算出极限学习机最佳初始参数,进而得到准确的火电厂锅炉NOx排放模型,对于燃煤机组降低污染物排放和具有重要意义。 | ||
搜索关键词: | 量子粒子群算法 改进 量子粒子群优化算法 极限学习机 初始参数 燃煤机组 预测模型 优化 锅炉燃烧系统 火电厂锅炉 污染物排放 递减函数 电厂锅炉 仿真验证 高效快速 机理分析 浓度预测 输入变量 训练数据 优化模型 重要意义 最小化 余弦 锅炉 预测 | ||
【主权项】:
1.一种基于改进量子粒子群算法的火电厂锅炉NOx预测模型优化方法,其特征在于包括以下步骤:步骤一,通过对燃煤机组锅炉燃烧系统机理分析,确定NOx排放浓度预测模型的输入变量;步骤二,将余弦递减函数与传统量子粒子群算法结合,提出改进的量子粒子群算法;步骤三,利用改进的量子粒子群优化算法优化极限学习机的初始参数,以训练数据预测结果和实际值的误差平方和最小化作为目标,建立准确的NOx排放预测模型;步骤四,通过仿真验证经过改进量子粒子群算法优化模型精度高于其他优化算法优化的模型。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于大唐环境产业集团股份有限公司,未经大唐环境产业集团股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811297483.0/,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06 计算;推算;计数
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理