[发明专利]一种基于时间递归神经网络的钻井事故预警方法有效

专利信息
申请号: 201811352903.0 申请日: 2018-11-14
公开(公告)号: CN109508827B 公开(公告)日: 2022-04-29
发明(设计)人: 蒋裕强;陈雁;黄嘉鑫;文敏;葛忆;李平;朱宇;谢静;程超;付永红;钟学燕;蒋婵;蒋增政;钟原;郑津 申请(专利权)人: 西南石油大学;四川杰瑞泰克科技有限公司
主分类号: G06Q10/04 分类号: G06Q10/04;G06N3/08
代理公司: 北京正华智诚专利代理事务所(普通合伙) 11870 代理人: 杨浩林
地址: 610500 四*** 国省代码: 四川;51
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于时间递归神经网络的钻井事故预警方法。第一步,采用自回归模型分析方法预测某一时刻的钻井特征值,并衡量预测得到的特征值与该时刻钻井真实数据之间的差异,由此得到事故候选集合。然后利用专家知识对事故候选集合中的事故进行真伪判断,并划分事故类型;最后获得已标注的若干钻井时序数据;在获得标注数据的前提下,训练一个有监督的模型,第二步,基于深度学习,构建时间递归神经网络模型。首先,随机选取部分标注的时序数据作为训练集,具体输入为各特征的组合和时间窗口的选取,然后对模型进行训练,最终预测输出一分钟后的事故发生概率与事故发生的类型。
搜索关键词: 一种 基于 时间 递归 神经网络 钻井 事故 预警 方法
【主权项】:
1.一种基于时间递归神经网络的钻井事故预警模型,其特征在于,包括:S1、采用自回归模型分析方法预测某一时刻的钻井特征值,并衡量预测得到的特征值与所述时刻钻井真实数据之间的差异,得到事故候选集合;利用专家知识对事故候选集合中的事故进行真伪判断,并划分事故类型,获得已标注的若干钻井时序数据;S2、基于深度学习,构建时间递归神经网络模型;随机选取部分标注的时序数据作为训练集,具体输入为各特征的组合和时间窗口的选取,并对模型进行训练,预测输出一分钟后的事故发生概率与事故发生的类型。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西南石油大学;四川杰瑞泰克科技有限公司,未经西南石油大学;四川杰瑞泰克科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201811352903.0/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top