[发明专利]一种基于时间递归神经网络的钻井事故预警方法有效
申请号: | 201811352903.0 | 申请日: | 2018-11-14 |
公开(公告)号: | CN109508827B | 公开(公告)日: | 2022-04-29 |
发明(设计)人: | 蒋裕强;陈雁;黄嘉鑫;文敏;葛忆;李平;朱宇;谢静;程超;付永红;钟学燕;蒋婵;蒋增政;钟原;郑津 | 申请(专利权)人: | 西南石油大学;四川杰瑞泰克科技有限公司 |
主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06N3/08 |
代理公司: | 北京正华智诚专利代理事务所(普通合伙) 11870 | 代理人: | 杨浩林 |
地址: | 610500 四*** | 国省代码: | 四川;51 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于时间递归神经网络的钻井事故预警方法。第一步,采用自回归模型分析方法预测某一时刻的钻井特征值,并衡量预测得到的特征值与该时刻钻井真实数据之间的差异,由此得到事故候选集合。然后利用专家知识对事故候选集合中的事故进行真伪判断,并划分事故类型;最后获得已标注的若干钻井时序数据;在获得标注数据的前提下,训练一个有监督的模型,第二步,基于深度学习,构建时间递归神经网络模型。首先,随机选取部分标注的时序数据作为训练集,具体输入为各特征的组合和时间窗口的选取,然后对模型进行训练,最终预测输出一分钟后的事故发生概率与事故发生的类型。 | ||
搜索关键词: | 一种 基于 时间 递归 神经网络 钻井 事故 预警 方法 | ||
【主权项】:
1.一种基于时间递归神经网络的钻井事故预警模型,其特征在于,包括:S1、采用自回归模型分析方法预测某一时刻的钻井特征值,并衡量预测得到的特征值与所述时刻钻井真实数据之间的差异,得到事故候选集合;利用专家知识对事故候选集合中的事故进行真伪判断,并划分事故类型,获得已标注的若干钻井时序数据;S2、基于深度学习,构建时间递归神经网络模型;随机选取部分标注的时序数据作为训练集,具体输入为各特征的组合和时间窗口的选取,并对模型进行训练,预测输出一分钟后的事故发生概率与事故发生的类型。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西南石油大学;四川杰瑞泰克科技有限公司,未经西南石油大学;四川杰瑞泰克科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811352903.0/,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06 计算;推算;计数
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理