[发明专利]一种基于监督式生成对抗网络的异常图像检测方法有效
申请号: | 201811368737.3 | 申请日: | 2018-11-16 |
公开(公告)号: | CN109584221B | 公开(公告)日: | 2020-07-28 |
发明(设计)人: | 罗长志;郑军 | 申请(专利权)人: | 聚时科技(上海)有限公司 |
主分类号: | G06T7/00 | 分类号: | G06T7/00;G06N3/04;G06N3/08 |
代理公司: | 上海科盛知识产权代理有限公司 31225 | 代理人: | 翁惠瑜 |
地址: | 200082 上海市杨浦区*** | 国省代码: | 上海;31 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及一种基于监督式生成对抗网络的异常图像检测方法,该方法包括以下步骤:1)获取待检测图片;2)将所述待检测图片输入一训练好的Supervised GANomaly模型,获得对应的异常类别信任值;3)判断所述异常类别信任值是否大于一异常类别判别阈值,若是,则判定为异常图像,若否,则判定为正常图像;所述Supervised GANomaly模型包括生成网络、编码网络、判别网络和分类网络,其中,所述生成网络、编码网络和判别网络用于学习正常样本的特征分布,分类网络用于区分正常样本和异常样本。与现有技术相比,本发明具有能够有效地将正常样本和异常样本区分开、鲁棒性好等优点。 | ||
搜索关键词: | 一种 基于 监督 生成 对抗 网络 异常 图像 检测 方法 | ||
【主权项】:
1.一种基于监督式生成对抗网络的异常图像检测方法,其特征在于,该方法包括以下步骤:1)获取待检测图片;2)将所述待检测图片输入一训练好的Supervised GANomaly模型,获得对应的异常类别信任值;3)判断所述异常类别信任值是否大于一异常类别判别阈值,若是,则判定为异常图像,若否,则判定为正常图像;所述Supervised GANomaly模型包括生成网络、编码网络、判别网络和分类网络,在训练时,所述生成网络、编码网络和判别网络用于学习正常样本的特征分布,分类网络用于区分正常样本和异常样本;在应用时,由分类网络输出异常类别信任值。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于聚时科技(上海)有限公司,未经聚时科技(上海)有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811368737.3/,转载请声明来源钻瓜专利网。