[发明专利]一种不同辅助样本正负比例的迁移学习方法在审
申请号: | 201811403924.0 | 申请日: | 2018-11-23 |
公开(公告)号: | CN109598292A | 公开(公告)日: | 2019-04-09 |
发明(设计)人: | 李远清;汤佳易 | 申请(专利权)人: | 华南理工大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62 |
代理公司: | 广州市华学知识产权代理有限公司 44245 | 代理人: | 冯炳辉 |
地址: | 511458 广东省广州市*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种不同辅助样本正负比例的迁移学习方法,包括步骤:1)将目标训练集分为K份,采用K折交叉验证,得到原始分类准确率;2)从辅助样本集中随机抽取不同正负样本比例的辅助样本子集;3)将不同正负样本比例的辅助样本子集和目标训练集合并进行迁移学习,并采用K折交叉验证,得到迁移学习分类准确率;4)求得各类正负样本比例的辅助样本子集给目标训练集带来的准确率的提升程度;5)对于每种比例,多次迭代,求出其迁移学习平均提升程度,并以此为目标训练集选择最好的正负样本比例的辅助样本子集,从而进行迁移学习并对目标测试集进行预测。本发明为一种新的评价标准用于评价迁移学习给目标训练集带来的准确率的提升程度。 | ||
搜索关键词: | 辅助样本 目标训练 迁移 正负样本 子集 准确率 学习 交叉验证 分类准确率 多次迭代 目标测试 评价标准 随机抽取 原始分类 集合 预测 | ||
【主权项】:
1.一种不同辅助样本正负比例的迁移学习方法,其特征在于,包括以下步骤:1)将目标训练集分为K份,采用K折交叉验证,得到原始分类准确率;2)从辅助样本集中随机抽取不同正负样本比例的辅助样本子集;3)将不同正负样本比例的辅助样本子集和目标训练集合并进行迁移学习,并采用K折交叉验证,得到迁移学习分类准确率;4)求得各类正负样本比例的辅助样本子集给目标训练集带来的准确率的提升程度;5)对于每种比例,多次迭代,求出其迁移学习平均提升程度,并以此为目标训练集选择最好的正负样本比例的辅助样本子集,从而进行迁移学习并对目标测试集进行预测。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华南理工大学,未经华南理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811403924.0/,转载请声明来源钻瓜专利网。