[发明专利]一种基于锚点图的跨模态哈希学习方法有效

专利信息
申请号: 201811439568.8 申请日: 2018-11-29
公开(公告)号: CN109657112B 公开(公告)日: 2022-07-08
发明(设计)人: 董西伟;邓安远;胡芳;贾海英;周军;孙丽;杨茂保;王海霞 申请(专利权)人: 九江学院
主分类号: G06F16/907 分类号: G06F16/907;G06K9/62
代理公司: 湖北创融蓝图知识产权代理事务所(特殊普通合伙) 42276 代理人: 羊淑梅
地址: 332000 *** 国省代码: 江西;36
权利要求书: 查看更多 说明书: 查看更多
摘要: 一种基于锚点图的跨模态哈希学习方法,特征是该方法包括以下步骤:(1)使用基于锚点图技术设计的目标函数得到个对象在图像模态和文本模态的二进制哈希编码,以及图像模态和文本模态的投影矩阵;(2)鉴于目标函数的非凸性质,通过交替更新的方式求解目标函数中的未知变量;(3)基于求解得到的图像模态和文本模态的投影矩阵,为查询样本和检索样本集中的样本生成二进制哈希编码;(4)基于生成的二进制哈希编码计算查询样本到检索样本集中各个样本的汉明距离;(5)使用基于近似最近邻搜索的跨模态检索器完成对查询样本的检索。该方法能够基于锚点图技术快速得到真实相似度矩阵的近似矩阵。
搜索关键词: 一种 基于 锚点图 跨模态哈希 学习方法
【主权项】:
1.一种基于锚点图的跨模态哈希学习方法,建立n个对象在图像模态和文本模态的特征分别为其中,分别表示第i个对象在图像模态和文本模态的特征向量,i=1,2,…,n,d1和d2分别表示图像模态和文本模态特征向量的维数;同时假设图像模态和文本模态的特征向量都是经过零中心化预处理的,即满足假设分别为图像模态和文本模态样本的邻接矩阵;矩阵A(1)中的元素和矩阵A(2)中的元素分别表示图像模态和文本模态中第i个样本与第j个样本之间的相似度;假设S∈{0,1}n×n为两个模态中样本之间的语义相关性矩阵,其中,Sij表示图像模态中第i个样本与文本模态中第j个样本的语义相关性;如果图像模态中第i个样本与文本模态中第j个样本是语义相关的(至少属于一个相同的类别),则Sij=1,否则Sij=0;特征在于,该方法包括以下步骤:(1)使用基于锚点图技术设计的目标函数得到n个对象在图像模态和文本模态的二进制哈希编码B1和B2,以及图像模态和文本模态的投影矩阵P1和P2;(2)鉴于目标函数的非凸性质,通过交替更新的方式求解目标函数中的未知变量B1、B2、P1和P2,即交替地求解如下三个子问题:固定B1和B2,求解P1和P2;固定B2、P1和P2,求解B1;固定B1、P1和P2,求解B2;(3)基于求解得到的图像模态和文本模态的投影矩阵P1和P2,为查询样本和检索样本集中的样本生成二进制哈希编码;(4)基于生成的二进制哈希编码计算查询样本到检索样本集中各个样本的汉明距离;(5)使用基于近似最近邻搜索的跨模态检索器完成对查询样本的检索。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于九江学院,未经九江学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201811439568.8/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top