[发明专利]一种联合学习稀疏属性网络表征方法及系统在审
申请号: | 201811452218.5 | 申请日: | 2018-11-30 |
公开(公告)号: | CN109639469A | 公开(公告)日: | 2019-04-16 |
发明(设计)人: | 陈恩红;王皓;刘淇;徐童 | 申请(专利权)人: | 中国科学技术大学 |
主分类号: | H04L12/24 | 分类号: | H04L12/24 |
代理公司: | 北京集佳知识产权代理有限公司 11227 | 代理人: | 王宝筠 |
地址: | 230026 安*** | 国省代码: | 安徽;34 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种联合学习稀疏属性网络表征方法及系统,该方法包括:在目标网络中确定训练样本;将目标网络中的节点和其属性进行投影,生成所述目标网络中各个节点的表征向量;利用所述训练样本中每个节点的相邻节点进行节点出现概率预测,并基于节点之间的属相相似度为每个节点的相邻节点分配不同的权重值;基于各个节点的表征向量和各个节点分配获得的权重值,生成目标函数;对所述目标函数进行优化,并融合网络结构的相似性和节点属性信息,使得学习到的节点向量表征同时维持网络结构和节点属性的相似关系。本发明能够有效地捕捉节点和自身稀疏属性之间的交互关系,缓解节点属性稀疏的问题。 | ||
搜索关键词: | 稀疏 目标网络 节点属性 目标函数 属性网络 网络结构 相邻节点 训练样本 权重 向量 节点属性信息 概率预测 交互关系 节点分配 节点向量 相似关系 相似度 有效地 学习 投影 捕捉 联合 融合 缓解 分配 优化 | ||
【主权项】:
1.一种联合学习稀疏属性网络表征方法,其特征在于,包括:在目标网络中确定训练样本;将目标网络中的节点和其属性进行投影,生成所述目标网络中各个节点的表征向量;利用所述训练样本中每个节点的相邻节点进行节点出现概率预测,获得预测值,所述预测值用来维持网络结构的相似性;基于节点之间的属性相似度,为每个节点的相邻节点分配不同的权重值;基于各个节点的表征向量和各个节点分配获得的权重值,生成目标函数;对所述目标函数进行优化,并融合网络结构的相似性和节点属性信息,使得学习到的节点向量表征同时维持网络结构和节点属性的相似关系。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学技术大学,未经中国科学技术大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811452218.5/,转载请声明来源钻瓜专利网。