[发明专利]一种基于用户个人特征的推荐方法及推荐系统在审

专利信息
申请号: 201811467106.7 申请日: 2018-12-03
公开(公告)号: CN109684538A 公开(公告)日: 2019-04-26
发明(设计)人: 付蔚;刘均;童世华;何雨;徐赟;李克宇;杨鑫宇 申请(专利权)人: 重庆邮电大学
主分类号: G06F16/9535 分类号: G06F16/9535;G06K9/62
代理公司: 北京同恒源知识产权代理有限公司 11275 代理人: 赵荣之
地址: 400065 *** 国省代码: 重庆;50
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明涉及一种基于用户个人特征的物品推荐方法,包括S1:获取推荐用户的个人特征信息和用户评价信息;S2:对收集到的用户评价信息结构化,建立评分数据库;S3:提取和过滤个人特征,确定用户所在的用户族群;S4:计算用户之间的相似性,根据用户对物品的历史评分数据来计算不同用户之间的相似性;S5:根据相似程度,预测目标用户对未评价物品的评分;S6:融合用户对物品评价的时间因素,对于用户每次的评分行为,都将其发生行为的时间进行保存,作为推荐方法的一个考虑因素,纳入到评分预测公式中,利用时间信息来降低预测误差;S7:根据预测评分,生成推荐集合,为目标用户推荐物品。
搜索关键词: 用户个人特征 用户评价 个人特征信息 信息结构化 个人特征 目标用户 评分数据 评分行为 时间信息 时间因素 推荐系统 相似程度 用户族群 预测目标 预测误差 预测 过滤 数据库 集合 融合 保存
【主权项】:
1.一种基于用户个人特征的物品推荐方法,其特征在于:包括以下步骤:S1:获取推荐用户的个人特征信息和用户评价信息,所述用户评价信息包括用户对历史购买物品的评分;S2:对收集到的用户评价信息进行结构化处理,建立评分数据库;S3:对用户的个人特征进行提取和过滤,利用机器学习的分类方法,确定用户所在的用户族群;S4:计算用户之间的相似性,根据用户对物品的历史评分数据来计算不同用户之间的相似性;S5:根据相似程度,预测目标用户对未评价物品的评分;S6:融合用户对物品评价的时间因素,对于用户每次的评分行为,都将其发生行为的时间进行保存,作为推荐方法的一个考虑因素,纳入到评分预测公式中,利用时间信息来降低预测误差;S7:根据预测评分,生成推荐集合,为目标用户推荐物品。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆邮电大学,未经重庆邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201811467106.7/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top