[发明专利]一种基于观测矩阵变换维度的图像分类方法有效
申请号: | 201811473410.2 | 申请日: | 2018-12-04 |
公开(公告)号: | CN109657707B | 公开(公告)日: | 2020-12-25 |
发明(设计)人: | 叶心汝;王勇 | 申请(专利权)人: | 浙江大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62 |
代理公司: | 杭州天勤知识产权代理有限公司 33224 | 代理人: | 胡红娟 |
地址: | 310013 浙江*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于观测矩阵变换维度的图像分类方法,包括:使用感知压缩对图像进行稀疏编码,得到低维度图像组成的数据集,将包含标签标注的数据集划分为训练集和测试集;构建包括输入层、隐含层与输出层的图像分类网络,所述隐含层为感知机单元;所述图像分类网络至少为两个,分别包含不同节点数感知机单元;将训练集作为输入,在标签的监督下进行训练,得到训练完成后对应的神经网络图像分类模型;使用测试集验证神经网络图像分类模型对图像分类的准确率,选择准确率最高的作为最终的神经网络图像分类模型;将待测图像输入,输出图像分类结果的预测概率。本发明提供的图像分类方法可以在不降低图像分类精度的条件下大大提升模型效率。 | ||
搜索关键词: | 一种 基于 观测 矩阵 变换 维度 图像 分类 方法 | ||
【主权项】:
1.一种基于观测矩阵变换维度的图像分类方法,包括以下步骤:(1)使用感知压缩对图像进行稀疏编码,感知压缩后的图像组成数据集,将包含标签标注的数据集划分为训练集和测试集;(2)构建包括输入层、隐含层与输出层的图像分类网络,所述隐含层为感知机单元;所述图像分类网络至少为两个,分别包含不同节点数感知机单元;(3)将步骤(1)中的训练集作为输入,在标签的监督下,对步骤(2)构建的图像分类网络进行训练,得到训练完成后对应的神经网络图像分类模型;(4)使用测试集验证神经网络图像分类模型对图像分类的准确率,选择准确率最高的神经网络图像分类模型作为最终的神经网络图像分类模型;(5)将待测图像输入步骤(4)得到的最终的神经网络图像分类模型,输出图像分类结果的预测概率。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江大学,未经浙江大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811473410.2/,转载请声明来源钻瓜专利网。