[发明专利]一种加强SSD小目标行人检测性能的网络结构及检测方法有效

专利信息
申请号: 201811474112.5 申请日: 2018-12-04
公开(公告)号: CN109800628B 公开(公告)日: 2023-06-23
发明(设计)人: 胡永健;陈奇华;刘琲贝;王宇飞 申请(专利权)人: 华南理工大学
主分类号: G06V40/10 分类号: G06V40/10;G06V20/40;G06V20/52;G06V10/774;G06V10/764;G06V10/80;G06V10/82;G06N3/0464;G06N3/048;G06N3/084
代理公司: 广州市华学知识产权代理有限公司 44245 代理人: 王东东
地址: 510640 广*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种加强SSD小目标行人检测性能的网络结构,包括:预处理模块、基础网络模块、附加特征提取模块、两级特征融合模块、分类和回归模块。本发明还公开了一种加强SSD小目标行人检测性能的检测方法,其特征在于,包括以下步骤:获取用于小目标行人检测的训练样本集并转换格式;初始化训练模型,对训练样本进行预处理;提取样本的浅层特征和深层特征,将深层特征的信息融合到浅层特征中,形成多尺度检测框架;进行网络参数的迭代更新;完成网络训练后进行测试。本发明在SSD算法的基础上引入了两级特征融合模块,有效利用了特征层之间的上下文信息,使深层网络信息能够较好地融合到浅层网络中,加强了SSD算法对小目标行人的检测性能。
搜索关键词: 一种 加强 ssd 目标 行人 检测 性能 网络 结构 方法
【主权项】:
1.一种加强SSD小目标行人检测性能的网络结构,其特征在于,包括:预处理模块,用于统一样本尺寸和样本扩增;基础网络模块,用于提取样本的浅层特征;附加特征提取模块,用于提取样本的深层特征;两级特征融合模块,用于将深层特征与浅层特征融合;分类和回归模块,用于计算损失,实现分类和行人框的回归。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华南理工大学,未经华南理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201811474112.5/,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top