[发明专利]一种适用于鱼类细粒度识别的深度学习方法在审
申请号: | 201811495457.9 | 申请日: | 2018-12-07 |
公开(公告)号: | CN109815973A | 公开(公告)日: | 2019-05-28 |
发明(设计)人: | 冀中;赵可心 | 申请(专利权)人: | 天津大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62 |
代理公司: | 天津市北洋有限责任专利代理事务所 12201 | 代理人: | 杜文茹 |
地址: | 300072*** | 国省代码: | 天津;12 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 一种适用于鱼类细粒度识别的深度学习方法,包括:将原图输入空间变换网络捕获图像中具有判别性的目标区域;使用双线性卷积神经网络网络进行特征提取;对图像的双线性特征φ(I)进行归一化处理;将归一化处理结果送入softmax分类器进行分类得到图像类别。本发明加入了作为注意力机制的空间变换网络,空间变换网络能去除图像中的复杂背景,有效获取图像中感兴趣的区域,提高后续分类精度。本发明设计的加入空间变换网络的BCNN对目标中具有判别性的局部区域有较强响应,最终识别准确率高。此外,本发明简单可行,是一个端对端的网络,利用反向传播算法优化,能够有效用于鱼类细粒度识别,并且具有很好的鲁棒性和泛化能力。 | ||
搜索关键词: | 空间变换 细粒度 图像 鱼类 归一化处理 网络 双线性 卷积神经网络 注意力机制 反向传播 复杂背景 局部区域 目标区域 输入空间 算法优化 特征提取 图像类别 网络捕获 有效获取 分类器 鲁棒性 分类 准确率 去除 送入 学习 响应 | ||
【主权项】:
1.一种适用于鱼类细粒度识别的深度学习方法,其特征在于,包括如下步骤:1)将原图输入空间变换网络捕获图像中具有判别性的目标区域;2)使用双线性卷积神经网络网络进行特征提取;3)对图像的双线性特征φ(I)进行归一化处理;4)将归一化处理结果送入softmax分类器进行分类得到图像类别。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于天津大学,未经天津大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811495457.9/,转载请声明来源钻瓜专利网。
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序