[发明专利]一种利用卷积神经网络进行船舶检测的训练方法及其船舶检测方法在审
申请号: | 201811500340.5 | 申请日: | 2018-12-07 |
公开(公告)号: | CN109583412A | 公开(公告)日: | 2019-04-05 |
发明(设计)人: | 王超;王原原;张红;董颖博;魏思思 | 申请(专利权)人: | 中国科学院遥感与数字地球研究所 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62 |
代理公司: | 北京金信知识产权代理有限公司 11225 | 代理人: | 喻嵘;郭迎侠 |
地址: | 100094*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本申请提供了一种利用卷积神经网络进行船舶检测的训练方法及其船舶检测的方法,所述训练方法包括:将包括船舶信息的SAR图像数据制作成预定义规格的训练图像信息;利用所述训练图像信息训练用于船舶检测的卷积神经网络获得所述卷积神经网络的类间关系及所述训练图像信息中的难例;利用焦点损失函数调整所述卷积神经网络的所述类间关系和所述难例的权重,以达到预设精度;其中,所述卷积神经网络的结构包括:基础处理模块、分类处理模块和回归处理模块;所述基础处理模块,至少包括下采样子模块和上采样子模块。本申请在船舶检测的平均精度超过97%。 | ||
搜索关键词: | 卷积神经网络 船舶检测 训练图像 采样子模块 基础处理 分类处理模块 处理模块 船舶信息 数据制作 损失函数 信息训练 预定义 权重 预设 申请 回归 焦点 | ||
【主权项】:
1.一种利用卷积神经网络进行船舶检测的训练方法,其特征在于,包括:将包括船舶信息的SAR图像数据制作成预定义规格的训练图像信息;利用所述训练图像信息训练用于船舶检测的卷积神经网络获得所述卷积神经网络的类间关系及所述训练图像信息中的难例;利用焦点损失函数调整所述卷积神经网络的所述类间关系和所述难例的权重,以达到预设精度;其中,所述卷积神经网络的结构包括:基础处理模块、分类处理模块和回归处理模块;所述基础处理模块,至少包括下采样子模块和上采样子模块,用于根据所述训练图像信息获得多个第一特征图像信息,并将所述第一特征图像信息分别输送给所述分类处理模块和回归处理模块;所述分类处理模块用于根据所述第一特征图像信息获得船舶分类信息;所述回归处理模块用于根据所述第一特征图像信息提取船舶定位回归的图像信息;所述第一特征图像信息,包括维数相同的多尺度的且用于分类和定位回归的图像信息。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院遥感与数字地球研究所,未经中国科学院遥感与数字地球研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811500340.5/,转载请声明来源钻瓜专利网。
- 上一篇:基于TOF摄像头的游客类别在线审核方法
- 下一篇:一种数据处理方法及装置