[发明专利]基于注意力机制神经网络的药物实体关系抽取方法及系统有效
申请号: | 201811510566.3 | 申请日: | 2018-12-11 |
公开(公告)号: | CN109783618B | 公开(公告)日: | 2021-01-19 |
发明(设计)人: | 张亮仁;杨波;刘振明;宗晓琳;胡建星 | 申请(专利权)人: | 北京大学 |
主分类号: | G06F16/332 | 分类号: | G06F16/332;G06F16/36;G06N3/04 |
代理公司: | 北京君尚知识产权代理有限公司 11200 | 代理人: | 邱晓锋 |
地址: | 100871 北*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及一种基于注意力机制神经网络的药物实体关系抽取方法及系统。该方法包括:(1)解析药化文献的文本内容,以句子为基本单位分句,并对句子中的每个词进行向量化表示;(2)将向量化表示的结果输入循环神经网络,通过循环神经网络按照前后双向语序提取句子中各词的关联特征并识别各药化实体;(3)通过注意力机制神经网络获得句子中的词间重要性权重,并将其与步骤(2)的输出合并;(4)将步骤(3)得到的结果输入卷积神经网络,通过卷积神经网络对各药化实体词两两预测类别关系。本发明增加注意力机制关注实体类别信息权重的分类方法能够降低长句中错误的依存分析结果带来的影响,提高药化实体关系抽取准确率。 | ||
搜索关键词: | 基于 注意力 机制 神经网络 药物 实体 关系 抽取 方法 系统 | ||
【主权项】:
1.一种基于注意力机制神经网络的药物实体关系抽取方法,其特征在于,包括以下步骤:(1)解析药化文献的文本内容,将文本内容以句子为基本单位分句,并对句子中的每个词进行向量化表示;(2)将步骤(1)的向量化表示的结果输入循环神经网络,通过循环神经网络按照前后双向语序提取句子中各词的关联特征并识别各药化实体;(3)通过注意力机制神经网络获得句子中的词间重要性权重,并将其与步骤(2)的输出合并;(4)将步骤(3)得到的结果输入卷积神经网络,通过卷积神经网络对各药化实体词两两预测类别关系。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京大学,未经北京大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811510566.3/,转载请声明来源钻瓜专利网。