[发明专利]基于深度学习的人脸识别方法及装置在审
申请号: | 201811550968.6 | 申请日: | 2018-12-18 |
公开(公告)号: | CN109815801A | 公开(公告)日: | 2019-05-28 |
发明(设计)人: | 张红武;舒剑军 | 申请(专利权)人: | 北京英索科技发展有限公司 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62 |
代理公司: | 北京鼎承知识产权代理有限公司 11551 | 代理人: | 王青伟;李伟波 |
地址: | 100036 北京市海*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 一种基于深度学习的人脸识别方法,包括人脸识别模型训练方法与人脸识别模型使用方法两方面。模型训练的基本思想是减小同类样本之间的差异值,增大非同类样本之间的差异值,以此来达到对人脸的准确识别。首先对特征提取网络进行训练,模型训练完成后,进行分类模型训练,在已经训练好的特征提取网络后添加softmax分类层,用于分类网络的训练。在softmax层中对特征进行分类,损失函数以减小输出与标签之间的距离为目标,训练结束后,得到人脸识别模型。人脸识别模型使用方法部分,将人脸图像输入到人脸识别模型,得到softmax分类结果,数值得分最高维度序号所代表的类别即为识别结果。 | ||
搜索关键词: | 人脸识别 模型训练 模型使用 特征提取 减小 样本 分类模型训练 分类结果 分类网络 人脸图像 损失函数 分类 人脸 维度 标签 网络 输出 学习 | ||
【主权项】:
1.一种基于深度学习的人脸识别模型训练方法,其特征在于,所述方法包括以下步骤:1)获取人脸图像数据;2)在每一次迭代训练中,随机选取N个人脸图像作为训练数据,将其分为三部分,分别作为参考样本、正样本、负样本;3)将所述训练数据输入到卷积神经网络进行计算,在所述卷积神经网络最后一层得到特征值;4)计算第一损失函数值Loss1,所述Loss1值的构成以减小同类样本之间的距离,增大非同类样本之间的距离为目标,实现对特征提取网络的训练;5)分类网络训练是在所述特征提取网络训练完毕后,在所述训练好的特征提取网络后增加softmax分类层,进行微调学习;实现对分类网络的训练;6)经过以上步骤的训练,得到基于深度学习的人脸识别模型。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京英索科技发展有限公司,未经北京英索科技发展有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811550968.6/,转载请声明来源钻瓜专利网。