[发明专利]基于分层式非高斯监测算法的工业生产过程故障监测方法有效
申请号: | 201811556452.2 | 申请日: | 2018-12-19 |
公开(公告)号: | CN109507972B | 公开(公告)日: | 2020-06-16 |
发明(设计)人: | 韩丽黎;何雨辰;曾九孙 | 申请(专利权)人: | 中国计量大学 |
主分类号: | G05B19/418 | 分类号: | G05B19/418 |
代理公司: | 杭州求是专利事务所有限公司 33200 | 代理人: | 林超 |
地址: | 310018 浙江省*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于分层式非高斯监测算法的工业生产过程故障监测方法。采集训练数据和待检测数据,计算每两个输入变量间的交互熵,根据交互熵将所有输入变量进行划分为各个子块,利用双层非高斯监控算法在每个子块内建立非高斯监测模型将每个子块中非高斯部分的数据提取出来,计算出非高斯部分数据的控制限和统计量;在每个子块内,对剩余的高斯部分的数据计算得到高斯部分的控制限和统计量;利用控制限和统计量进行故障检测。本发明在非高斯过程故障检测中优于其他传统方法,既可以充分考虑变量间的高度复杂的耦合关系,又可以将未知分布特性的数据中的非高斯部分提取出来,使化工过程的故障监测更加高效与准确。 | ||
搜索关键词: | 基于 分层 式非高斯 监测 算法 工业 生产过程 故障 方法 | ||
【主权项】:
1.一种基于分层式非高斯监测算法的工业生产过程故障监测方法,其特征在于,包括以下步骤:i)在工业生产过程已知没有故障情况下,通过传感器采集工业生产过程的输入变量x和输出变量y的数据作为训练数据;在工业生产过程需要检测故障情况下,通过传感器在线采集得到工业生产过程的输入变量x和输出变量y的数据作为待检测数据;ii)计算每两个输入变量间的交互熵,根据交互熵将所有输入变量进行划分为各个子块,然后通过可视化层次聚类将各个子块用树状图表示;iii)利用双层非高斯监控算法在每个子块内建立非高斯监测模型将每个子块中非高斯部分的数据提取出来,计算出非高斯部分数据的控制限和统计量;iv)利用偏最小二乘法在每个子块内,对剩余的高斯部分的数据通过特征向量奇异值分解方法建立PLS监测模型,计算得到高斯部分数据的控制限和统计量;v)利用步骤iii)和iv)中的非高斯部分数据的控制限和统计量以及高斯部分数据的控制限和统计量进行故障检测。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国计量大学,未经中国计量大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811556452.2/,转载请声明来源钻瓜专利网。