[发明专利]一种基于卷积神经网络的图像识别方法有效

专利信息
申请号: 201811557964.0 申请日: 2018-12-19
公开(公告)号: CN109657719B 公开(公告)日: 2022-09-30
发明(设计)人: 张恒瑜;包勇;文耀锋 申请(专利权)人: 浙江大学常州工业技术研究院
主分类号: G06V10/82 分类号: G06V10/82;G06V10/774;G06N3/04;G06N3/08;G06T7/00;G06T7/70
代理公司: 常州市权航专利代理有限公司 32280 代理人: 朱鑫乐
地址: 213000 江苏省常州市新*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提供了一种基于卷积神经网络的图像识别方法,包括以下步骤:S100、标注:为断面图的每个分区赋唯一值Labelj,为断面图中的异物区赋唯一值Labelm,S200,获取训练集:选取同一目标物的M个标注后的断面图依序排列并层叠得到目标物的立体图集,将立体图集作为一个训练样本,收集若干个训练样本组成训练集;S300、构建卷积神经网络;S400、将所述训练集输入所述卷积神经网络中进行训练,得到卷积神经网络分类模型。这种基于卷积神经网络的图像识别方法将标注后的多张断面图按序层叠后作为训练样本对卷积神经网络进行训练,得到能够根据CT图得到异物所处位置的卷积神经网络分类模型,这种卷积神经网络分类模型能够辅助医生高效准确的判断出异物所在位置。
搜索关键词: 一种 基于 卷积 神经网络 图像 识别 方法
【主权项】:
1.一种基于卷积神经网络的图像识别方法,其特征在于,包括以下步骤:S100、标注:为断面图的每个分区赋唯一值Labelj,为断面图中的异物区赋唯一值Labelm,其中j为1~n,n为目标物具有的分区数量,所述分区内每个像素的灰度值为Labelj,所述异物区内每个像素的灰度值为Labelm;S200,获取训练集:选取同一目标物的M个标注后的断面图依序排列并层叠得到目标物的立体图集,将立体图集作为一个训练样本,收集若干个训练样本组成训练集;S300、构建卷积神经网络;S400、将所述训练集输入所述卷积神经网络中进行训练,得到卷积神经网络分类模型。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江大学常州工业技术研究院,未经浙江大学常州工业技术研究院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201811557964.0/,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top