[发明专利]基于超像素特征提取神经网络算法的高光谱影像分类方法有效
申请号: | 201811561744.5 | 申请日: | 2018-12-20 |
公开(公告)号: | CN109784192B | 公开(公告)日: | 2023-04-18 |
发明(设计)人: | 马晶晶;蒋汾龙;公茂果;王善峰;范晓龙;张明阳;武越;张朋朋 | 申请(专利权)人: | 西安电子科技大学 |
主分类号: | G06V20/10 | 分类号: | G06V20/10;G06V10/26;G06V10/764;G06V10/80;G06V10/82;G06T3/40;G06N3/04;G06N3/08 |
代理公司: | 西安恒泰知识产权代理事务所 61216 | 代理人: | 孙雅静 |
地址: | 710071*** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开一种基于超像素特征提取神经网络算法的高光谱影像分类方法,包括:高光谱影像经像素点标记和超像素分割处理获得带有像素点标记的超像素和未带像素点标记的超像素;利用超像素特征提取神经网络以带有像素点标记的超像素为输入对象进行网络训练,再利用训练好的超像素特征提取神经网络对未带像素点标记的超像素进行处理得到分类图;所述的超像素特征提取神经网络包括多个叠加的子网络层,每层子网络层由全连接的特征提取层、池化层、特征拼接层和批标准化层组成。本发明减少了监督学习方法中对样本标记数目的依赖;通过设计的神经网络对超像素的提取,兼顾了超像素个体像素以及全体像素的深度特征信息,使特征更鲁棒。 | ||
搜索关键词: | 基于 像素 特征 提取 神经网络 算法 光谱 影像 分类 方法 | ||
【主权项】:
1.一种基于超像素特征提取神经网络算法的高光谱影像分类方法,其特征在于,包括:高光谱影像经像素点标记和超像素分割处理获得带有像素点标记的超像素和未带像素点标记的超像素;利用超像素特征提取神经网络以带有像素点标记的超像素为输入对象进行网络训练,再利用训练好的超像素特征提取神经网络对未带像素点标记的超像素进行处理得到分类图;所述的超像素特征提取神经网络包括多个叠加的子网络层,每层子网络层由全连接的特征提取层、池化层、特征拼接层和批标准化层组成。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811561744.5/,转载请声明来源钻瓜专利网。