[发明专利]基于萤火虫和加权极限学习机的微博异常用户检测方法有效

专利信息
申请号: 201811573286.7 申请日: 2018-12-21
公开(公告)号: CN109657147B 公开(公告)日: 2022-11-11
发明(设计)人: 张志洁 申请(专利权)人: 岭南师范学院
主分类号: G06F16/9535 分类号: G06F16/9535;G06N20/00;G06N3/00
代理公司: 广州市南锋专利事务所有限公司 44228 代理人: 李慧;王允辉
地址: 524000 *** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于萤火虫和加权极限学习机的微博异常用户检测方法,基于萤火虫和加权极限学习机的微博异常用户检测方法,具体步骤如下:将采集到的微博用户数据分为训练集和测试集;利用萤火虫算法创建加权极限学习机;优化加权极限学习机;检测或预测微博异常用户:将测试集中的微博用户特征,即微博内容、用户信息和用户上下文,作为优化的加权极限学习机的输入数据样本,优化的加权极限学习机的输出值为该用户是否为微博异常用户。该方法不仅检测的精度高,而且智能化程度高,一般不需要人工介入,工作效率高。
搜索关键词: 基于 萤火虫 加权 极限 学习机 异常 用户 检测 方法
【主权项】:
1.一种基于萤火虫和加权极限学习机的微博异常用户检测方法,其特征在于,包括以下步骤:步骤一:数据采集并分类:采集微博用户数据,并对数据进行清洗,筛选出与微博内容、用户信息、用户上下文有关的数据特征,对微博异常和非异常用户进行标记,将采集到的微博用户数据分为训练集和测试集;步骤二:创建加权极限学习机:利用萤火虫算法创建加权极限学习机;步骤三:优化加权极限学习机:加权极限学习机利用训练集中的数据进行学习,对输入权值和阈值进行调整,直到达到预计误差值时停止对加权极限学习机的训练,形成优化的加权极限学习机;步骤四:检测或预测微博异常用户:将测试集中的微博用户特征,即微博内容、用户信息和用户上下文,作为优化的加权极限学习机的输入数据样本,优化的加权极限学习机的输出值为该用户是否为微博异常用户。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于岭南师范学院,未经岭南师范学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201811573286.7/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top