[发明专利]一种基于多光谱巡检图像的杂草智能识别方法有效
申请号: | 201811590807.X | 申请日: | 2018-12-25 |
公开(公告)号: | CN109784205B | 公开(公告)日: | 2021-02-23 |
发明(设计)人: | 岳国良;路艳巧;孙翠英;曹红卫;常浩;王丽丽;刘勇;高艳海;何瑞东 | 申请(专利权)人: | 国网河北省电力有限公司电力科学研究院;国家电网有限公司;国网河北能源技术服务有限公司 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62;G06N3/04;G06N3/08;G06T7/11 |
代理公司: | 北京航智知识产权代理事务所(普通合伙) 11668 | 代理人: | 黄川;史继颖 |
地址: | 050021 河*** | 国省代码: | 河北;13 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 一种基于多光谱巡检图像的杂草智能识别方法。本发明涉及深度学习图像识别领域,特别是涉及一种基于神经网络对巡检图像中杂草的识别方法。本发明以提高多光谱巡检图像中杂草的识别率为目标,以多光谱巡检图像中杂草的特征为基础,结合卷积神经网络方法,解决多光谱巡检图像中电力设备附近杂草识别问题。通过对多光谱巡检图像进行样本数据增广和图像分割,依据杂草和依附的电力设备的特征,在不丢失边缘信息的情况下,获得完整的区域分割结果。接着引入区域生成网络,提取出整幅图像的基础信息,然后再对图像提取固定个数的候选框的图像特征,和改进的图像分类网络连接在一起,得到最终的卷积神经网络模型对杂草进行智能识别。 | ||
搜索关键词: | 一种 基于 光谱 巡检 图像 杂草 智能 识别 方法 | ||
【主权项】:
1.一种基于多光谱巡检图像的杂草智能识别方法,包含对多光谱巡检图像的样本数据增广、图像分割和基于卷积神经网络模型的杂草识别,其特征在于:1)针对多光谱巡检图像中存在电气设备在中心位置这个特征,我们对图像进行随机上下左右翻转、随机变换对比度和尺度变换三种数据增广办法,并且引用基于数学形态学的IKONOS多光谱图像分割技术对多光谱巡检图像进行分割;2)卷积神经网络模型中的图像分类网络使用改进后的AlexNet网络,为了使得网络能够适应各种尺寸的图像,将最后一层pooling(池化)层改为roi_pooling(兴趣区域池化)层,使得不同尺寸的图像在到fc(全连接)层时连接为相同尺寸的特征向量;3)卷积神经网络模型中的区域生成网络中,候选区域的代价函数计算如下式所示:
式中,pi是分类网络对该区域为前景或后景的置信度,为前后景真实标签,若
为1则表示该区域真实为前景,后项计入计算,否则为后景,后项不计入计算;ti为标记图像区域位置和尺寸的四维向量,
为真实物体方框的区域位置和尺寸;
用来描述网络计算分类置信度和真实类别的误差,本方法用真实分类u对应的概率计算;如下式所示:![]()
表示候选区域检测误差,用于比较真实物体区域V与预测候选区域tu间的平移缩放参数误差,如下式所示:
式中,g为smooth L1损失函数,对异常值不敏感,如下式所示:![]()
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于国网河北省电力有限公司电力科学研究院;国家电网有限公司;国网河北能源技术服务有限公司,未经国网河北省电力有限公司电力科学研究院;国家电网有限公司;国网河北能源技术服务有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811590807.X/,转载请声明来源钻瓜专利网。
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序