[发明专利]图像目标检测模型建立方法、装置、存储介质及程序产品有效
申请号: | 201811592967.8 | 申请日: | 2018-12-25 |
公开(公告)号: | CN109784349B | 公开(公告)日: | 2021-02-19 |
发明(设计)人: | 蔡巍;胡佳慧;崔朝辉;赵立军;张霞 | 申请(专利权)人: | 东软集团股份有限公司 |
主分类号: | G06K9/46 | 分类号: | G06K9/46;G06K9/62 |
代理公司: | 北京集佳知识产权代理有限公司 11227 | 代理人: | 党丽;王宝筠 |
地址: | 110179 辽*** | 国省代码: | 辽宁;21 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供一种图像目标检测模型的建立方法及装置,利用遮挡图像样本进行特征遮挡对抗网络模型的训练,通过特征遮挡对抗网络模型来获得图像样本的遮挡掩码,这样,在进行检测网络模型的训练时,将训练用的图像样本的特征图添加遮挡掩码,该遮挡掩码利用训练好的特征遮挡对抗网络模型获得。这样,由于特征遮挡对抗网络模型利用遮挡图像样本训练而获得,能够训练出生成更好掩码的特征遮挡对抗网络模型,进而利用该特征遮挡对抗网络获得用于检测网络模型训练用的遮挡掩码,从而,可以利用具有更好遮挡掩码的图像样本进行检测网络模型的训练,使得检测网络模型对遮挡情形得到充分训练,提高检测网络模型对遮挡物体检测的准确性。 | ||
搜索关键词: | 图像 目标 检测 模型 建立 方法 装置 存储 介质 程序 产品 | ||
【主权项】:
1.一种图像目标检测的模型建立方法,其特征在于,包括:对第一图像样本进行遮挡,以获得第一遮挡图像样本;利用所述第一遮挡图像样本进行特征遮挡对抗网络模型的训练,所述特征遮挡对抗网络模型用于基于对抗网络获得图像样本的遮挡掩码;进行检测网络模型的训练,且训练用的第二图像样本的特征图利用训练后的特征遮挡对抗网络模型添加有遮挡掩码,所述检测网络模型用于基于深度学习的图像目标检测。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东软集团股份有限公司,未经东软集团股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811592967.8/,转载请声明来源钻瓜专利网。
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序