[发明专利]一种基于语谱图提取深度空间注意特征的语音情感识别方法有效
申请号: | 201811599907.9 | 申请日: | 2018-12-26 |
公开(公告)号: | CN109637522B | 公开(公告)日: | 2022-12-09 |
发明(设计)人: | 王金华;应娜;朱辰都 | 申请(专利权)人: | 杭州电子科技大学 |
主分类号: | G10L15/02 | 分类号: | G10L15/02;G10L15/06;G10L15/16;G06K9/62;G06N3/04 |
代理公司: | 浙江千克知识产权代理有限公司 33246 | 代理人: | 周希良 |
地址: | 310018 浙江省杭州市*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于语谱图提取深度空间注意特征的语音情感识别方法,采用以下步骤完成:步骤a:对已标注指定情感标签的标准情感数据库中的语音进行预处理,生成语谱图;步骤b:将所述语谱图送入AItti模型提取SEF特征;步骤c:将所述语谱图送入语音情感模型提取浅层特征;步骤d:将所述SEF特征和所述浅层特征作为输入,送到CSWNet中,生成标定权重特征;步骤e:将所述标定权重特征送入CRNN之后的网络层,提取深度情感特征,通过Softmax分类器进行情感分类,生成最终分类结果。本发明所述方法相比于传统模型,在少量增加模型复杂度的前提下,平均识别率提升了8.43%,非同类情感区分效果明显,兼具良好的泛化性。 | ||
搜索关键词: | 一种 基于 语谱图 提取 深度 空间 注意 特征 语音 情感 识别 方法 | ||
【主权项】:
1.一种基于语谱图提取深度空间注意特征的语音情感识别方法,其特征在于:包括以下步骤:步骤a:对已标注指定情感标签的标准情感数据库中的语音进行预处理,生成语谱图;步骤b:将所述语谱图送入AItti模型提取SEF特征;步骤c:将所述语谱图送入语音情感模型提取浅层特征;步骤d:将所述SEF特征和所述浅层特征作为输入,送到CSWNet中,生成标定权重特征;步骤e:将所述标定权重特征送入CRNN之后的网络层,提取深度情感特征,通过Softmax分类器进行情感分类,生成最终分类结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于杭州电子科技大学,未经杭州电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811599907.9/,转载请声明来源钻瓜专利网。