[发明专利]基于深度卷积神经网络的违禁物品标识方法有效

专利信息
申请号: 201811608398.1 申请日: 2018-12-27
公开(公告)号: CN109948412B 公开(公告)日: 2022-09-16
发明(设计)人: 夏鄂;苟麟;梁鸿宇;余顺彬;陈白帆;商行;陈文昊 申请(专利权)人: 中南大学
主分类号: G06V20/00 分类号: G06V20/00;G06V10/82;G06N3/04;G06N3/08
代理公司: 长沙正奇专利事务所有限责任公司 43113 代理人: 马强;王娟
地址: 410083 湖南*** 国省代码: 湖南;43
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于深度卷积神经网络的违禁物品标识方法,搭建一个具有三层Inception模块和一层BP神经网络的深度卷积神经网络。以违禁物品样本数据利用SGD随机梯度下降对三个Inception模块进行训练,获取违禁物品样本数据的高阶抽象特征,再通过BP对深度卷积神经网络参数进行优化,从而完成深度卷积神经网络的训练。将训练好的深度卷积神经网络应用到当前违禁物品样本数据,通过输出Softmax层便可获得违禁物品的种类。本发明可以识别各类不同有特定形状的违禁物品,提高安检的安全性。
搜索关键词: 基于 深度 卷积 神经网络 违禁物品 标识 方法
【主权项】:
1.一种基于深度卷积神经网络的违禁物品识别标识方法,其特征在于,包括以下步骤:1)采集X射线或X光下违禁物品的图像数据作为数据集,将数据集以0.2:0.8的比例划分为测试集和训练集;2)搭建深度卷积神经网络结构模型,所述深度卷积神经网络结构模型由一个预处理层、三个Inception模块、全连接层和Softmax层来构成一个深度置信网络,即DBN;3)初始化所述深度置信网络DBN;4)将训练集作为训练样本输入到深度卷积神经网络结构模型第一层预处理层;5)第一层预处理层训练后,固定网络参数,数据样本经过第一层抽取初步的特征数据,用于第二层的输入;6)第二层训练后,固定网络参数,将第二层隐含层作为第三层的可视层;数据样本经过第一层预处理层、第二层抽取深层次的特征数据,用做第三层的输入;7)第三层训练后,固定网络参数,将第三层隐含层作为第四层的可视层;经过第三层的处理,空间信息转化为高阶抽象的特征信息,用于第四层的输入;8)第四层训练后,固定网络参数,将第四层隐含层作为输出层的可视层;经过第四层的处理,特征信息尺寸继续降低,通道深度增加,用于输出层的输入;9)输出层利用全连接层连接第四层输出的所有特征,通过BP算法训练全连接层使损失函数达到最小,然后将全连接层输出送给Softmax分类器输出识别结果;10)经过训练,完成构建基于深度卷积神经网络的违禁物品识别模型,将未学习的X射线检测数据输入识别模型,用来识别违禁物品。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中南大学,未经中南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201811608398.1/,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top