[发明专利]一种用于图像数据分类的神经网络模型的训练方法与设备有效
申请号: | 201811614381.7 | 申请日: | 2018-12-27 |
公开(公告)号: | CN109740657B | 公开(公告)日: | 2021-10-29 |
发明(设计)人: | 谢迎;张清 | 申请(专利权)人: | 郑州云海信息技术有限公司 |
主分类号: | G06K9/62 | 分类号: | G06K9/62 |
代理公司: | 北京连和连知识产权代理有限公司 11278 | 代理人: | 回旋 |
地址: | 450018 河南省郑州市*** | 国省代码: | 河南;41 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种用于图像分类的神经网络模型的训练方法,包括步骤:S1基于CNN和LSTM构建神经网络模型,并获取图像训练集和测试集;S2利用图像训练集的第一部分图像对模型进行训练;S3将图像测试集输入到训练后的模型中,得到图像测试集的预测分类结果;S4利用自主学习算法根据预测分类结果得到图像测试集中满足预设条件的图像,并对其进行实际分类;S5利用满足预设条件的图像及其对应的实际分类结果以及图像训练集的第一部分图像对上一次训练后的模型进行再次训练;S6利用图像训练集的第二部分图像对再次训练后的模型进行测试。本发明公开的方法能够针对图像进行自动化分类识别,提高分类效率,可以有效地辅助人们判断特定影像数据。 | ||
搜索关键词: | 一种 用于 图像 数据 分类 神经网络 模型 训练 方法 设备 | ||
【主权项】:
1.一种用于图像数据分类的神经网络模型的训练方法,其中所述方法包括步骤:S1,基于卷积神经网络和长短期记忆神经网络构建神经网络模型,并获取图像训练集、图像测试集;S2,利用所述图像训练集的第一部分图像对所述神经网络模型进行训练;S3,将所述图像测试集输入到训练后的神经网络模型中,得到所述图像测试集的预测分类结果;S4,利用自主学习算法根据所述预测分类结果得到所述图像测试集中满足预设条件的图像,并对其进行实际分类;S5,利用所述满足预设条件的图像及其对应的实际分类结果以及所述图像训练集的所述第一部分图像对上一次训练后的神经网络模型进行再次训练;和S6,利用所述图像训练集的第二部分图像对再次训练后的神经网络模型进行测试,以确认所述模型的预测分类结果满足预设精度。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于郑州云海信息技术有限公司,未经郑州云海信息技术有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811614381.7/,转载请声明来源钻瓜专利网。
- 上一篇:一种基于卷积神经网络的矿石分选方法
- 下一篇:图像处理方法及装置
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 数据显示系统、数据中继设备、数据中继方法、数据系统、接收设备和数据读取方法
- 数据记录方法、数据记录装置、数据记录媒体、数据重播方法和数据重播装置
- 数据发送方法、数据发送系统、数据发送装置以及数据结构
- 数据显示系统、数据中继设备、数据中继方法及数据系统
- 数据嵌入装置、数据嵌入方法、数据提取装置及数据提取方法
- 数据管理装置、数据编辑装置、数据阅览装置、数据管理方法、数据编辑方法以及数据阅览方法
- 数据发送和数据接收设备、数据发送和数据接收方法
- 数据发送装置、数据接收装置、数据收发系统、数据发送方法、数据接收方法和数据收发方法
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置