[发明专利]一种用于图像数据分类的神经网络模型的训练方法与设备有效

专利信息
申请号: 201811614381.7 申请日: 2018-12-27
公开(公告)号: CN109740657B 公开(公告)日: 2021-10-29
发明(设计)人: 谢迎;张清 申请(专利权)人: 郑州云海信息技术有限公司
主分类号: G06K9/62 分类号: G06K9/62
代理公司: 北京连和连知识产权代理有限公司 11278 代理人: 回旋
地址: 450018 河南省郑州市*** 国省代码: 河南;41
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种用于图像分类的神经网络模型的训练方法,包括步骤:S1基于CNN和LSTM构建神经网络模型,并获取图像训练集和测试集;S2利用图像训练集的第一部分图像对模型进行训练;S3将图像测试集输入到训练后的模型中,得到图像测试集的预测分类结果;S4利用自主学习算法根据预测分类结果得到图像测试集中满足预设条件的图像,并对其进行实际分类;S5利用满足预设条件的图像及其对应的实际分类结果以及图像训练集的第一部分图像对上一次训练后的模型进行再次训练;S6利用图像训练集的第二部分图像对再次训练后的模型进行测试。本发明公开的方法能够针对图像进行自动化分类识别,提高分类效率,可以有效地辅助人们判断特定影像数据。
搜索关键词: 一种 用于 图像 数据 分类 神经网络 模型 训练 方法 设备
【主权项】:
1.一种用于图像数据分类的神经网络模型的训练方法,其中所述方法包括步骤:S1,基于卷积神经网络和长短期记忆神经网络构建神经网络模型,并获取图像训练集、图像测试集;S2,利用所述图像训练集的第一部分图像对所述神经网络模型进行训练;S3,将所述图像测试集输入到训练后的神经网络模型中,得到所述图像测试集的预测分类结果;S4,利用自主学习算法根据所述预测分类结果得到所述图像测试集中满足预设条件的图像,并对其进行实际分类;S5,利用所述满足预设条件的图像及其对应的实际分类结果以及所述图像训练集的所述第一部分图像对上一次训练后的神经网络模型进行再次训练;和S6,利用所述图像训练集的第二部分图像对再次训练后的神经网络模型进行测试,以确认所述模型的预测分类结果满足预设精度。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于郑州云海信息技术有限公司,未经郑州云海信息技术有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201811614381.7/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top