[发明专利]一种基于三维卷积神经网络的CT造影图像肾动脉分割方法有效

专利信息
申请号: 201811620359.3 申请日: 2018-12-28
公开(公告)号: CN109801268B 公开(公告)日: 2023-03-14
发明(设计)人: 杨冠羽;何宇霆;李甜甜;赵子腾;吴显政;伍家松;孔佑勇;舒华忠 申请(专利权)人: 东南大学
主分类号: G06T7/00 分类号: G06T7/00;G06T7/11
代理公司: 南京经纬专利商标代理有限公司 32200 代理人: 朱桢荣
地址: 210096 *** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于三维卷积神经网络的CT造影图像肾动脉分割方法,涉及图像处理技术领域,设计了一种应用于CT造影图像肾动脉分割的三维卷积网络结构,利用手工标注获得肾动脉数据集,然后将训练集送入该网络结构进行训练,得到训练模型,利用得到的训练模型对新的肾脏数据进行预测,得到肾动脉分割掩模。本发明能够获得高准确率的输出结果,能够解决肾动脉难分割的问题,通过本发明能够直接得到肾动脉分割掩模。
搜索关键词: 一种 基于 三维 卷积 神经网络 ct 造影 图像 动脉 分割 方法
【主权项】:
1.一种基于三维卷积神经网络的CT造影图像肾动脉分割方法,其特征在于,包括以下步骤:步骤(P1)、对已有的CT造影图像分割出图像中的肾脏区域,对肾动脉进行标注,得到感兴趣区域,生成训练数据集;步骤(P2)、将训练数据集送入三维卷积神经网络中进行训练,得到训练模型;三维卷积神经网络包括五个部分,分别为输入模块、现实情况流、浅层意识流、深层意识流和输出模块;输入模块,用于将原始图像I直接输入至现实情况流和深层意识流,并将输入至现实情况流的原始图像重命名为现实情况流图像RI,输入至深层意识流的原始图像重命名为深层意识流图像DI;现实情况流,用于对RI连续进行池化操作,获得不同尺寸的RI,并将不同尺寸的RI分别输出至浅层意识流;浅层意识流,用于多次提取浅层特征图并将其输出至深层意识流;深层意识流,用于获得多次记忆的深层特征图并将其输出至浅层意识流,并将最后一次获得的深层特征图输入至输出模块;输出模块对其进行卷积操作,并激活,获得肾动脉的分割掩模;步骤(P3)、对于新的待分割的肾脏CT造影图像,送入已训练完毕的步骤(P2)的训练模型得到肾动脉分割掩模。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东南大学,未经东南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201811620359.3/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top