[发明专利]一种基于多时间尺度卷积神经网络的视频行人再识别方法有效
申请号: | 201910013082.6 | 申请日: | 2019-01-07 |
公开(公告)号: | CN109886090B | 公开(公告)日: | 2020-12-04 |
发明(设计)人: | 张史梁;李佳宁;黄铁军 | 申请(专利权)人: | 北京大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62 |
代理公司: | 北京辰权知识产权代理有限公司 11619 | 代理人: | 刘广达 |
地址: | 100871*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 一种基于多时间尺度卷积神经网络的视频行人再识别方法,包括:利用多时间尺度卷积神经网络模型处理视频,获得具有空间特征和多尺度时间特征的第一输出,其中,所述多时间尺度卷积神经网络由在空间卷积神经网络中插入多尺度的3D卷积层和残差注意力层获得;利用空间卷积神经网络模型处理所述视频,获得具有空间特征的第二输出;将所述第一输出和所述第二输出进行融合;根据融合结果,对所述视频中的行人进行步态识别和/或空间特征识别。本发明实现了对视频中行人的空间特征(衣着)以及步态的识别,具有更高的识别率。与2D神经网络相比,获取了多尺度的时间线索;与3D神经网路相比,引入的参数容量更小,在相同系统中的运行速度更快。 | ||
搜索关键词: | 一种 基于 多时 尺度 卷积 神经网络 视频 行人 识别 方法 | ||
【主权项】:
1.一种基于多时间尺度卷积神经网络的视频行人再识别方法,其特征在于,包括:利用多时间尺度卷积神经网络模型处理视频,获得具有空间特征和多尺度时间特征的第一输出,其中,所述多时间尺度卷积神经网络由在空间卷积神经网络中插入多尺度的3D卷积层和残差注意力层获得;利用空间卷积神经网络模型处理所述视频,获得具有空间特征的第二输出;将所述第一输出和所述第二输出进行融合;根据融合结果,对所述视频中的行人进行步态识别。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京大学,未经北京大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910013082.6/,转载请声明来源钻瓜专利网。