[发明专利]一种用于化妆前后人脸图像自动识别方法有效
申请号: | 201910026923.7 | 申请日: | 2019-01-11 |
公开(公告)号: | CN109858392B | 公开(公告)日: | 2021-02-02 |
发明(设计)人: | 付彦伟;姜育刚;薛向阳;王文萱 | 申请(专利权)人: | 复旦大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62 |
代理公司: | 上海元好知识产权代理有限公司 31323 | 代理人: | 张妍;刘琰 |
地址: | 200433 *** | 国省代码: | 上海;31 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种用于化妆前后人脸图像自动识别方法,包括如下步骤S1,对人脸数据进行特征提取;S2,使用基于面部关键性区域替换的数据集扩充算法扩充面部化妆数据集;S3,构建多示例的训练数据集;S4,采用关键性局部区域特征辅助学习任务网络进行全局特征和局部特征的提取,其后采用注意力机制的特征信息融合方法获得训练数据的最终特征,并不断训练和微调网络;S5,不断迭代重复步骤S2和步骤S3,直至网络收敛,实现人脸识别网络的训练;S6,在测试数据集上,给定待识别的化妆前后人脸数据,通过训练得到的人脸识别网络进行特征提取和相似度计算,从而实现人脸识别。 | ||
搜索关键词: | 一种 用于 化妆 后人 图像 自动识别 方法 | ||
【主权项】:
1.一种用于化妆前后人脸图像自动识别方法,其特征在于,包括如下步骤:S1,对人脸数据进行特征提取;S2,使用基于面部关键性区域替换的数据集扩充算法扩充面部化妆数据集;S3,构建多示例的训练数据集;S4,采用关键性局部区域特征辅助学习任务网络进行全局特征和局部特征的提取,其后采用注意力机制的特征信息融合方法获得训练数据的最终特征,并不断训练和微调网络;S5,不断迭代重复步骤S2和步骤S3,直至网络收敛,实现人脸识别网络的训练;S6,在测试数据集上,给定待识别的化妆前后人脸数据,通过训练得到的人脸识别网络进行特征提取和相似度计算,从而实现人脸识别。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于复旦大学,未经复旦大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910026923.7/,转载请声明来源钻瓜专利网。
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序