[发明专利]一种基于迁移学习和空洞卷积的癫痫状态识别方法有效
申请号: | 201910043745.9 | 申请日: | 2019-01-17 |
公开(公告)号: | CN111444747B | 公开(公告)日: | 2023-09-29 |
发明(设计)人: | 王守岩;沈雷 | 申请(专利权)人: | 复旦大学 |
主分类号: | G06F18/24 | 分类号: | G06F18/24;G06F18/213;G06N3/0464;G06N3/096 |
代理公司: | 上海元好知识产权代理有限公司 31323 | 代理人: | 徐雯琼;张妍 |
地址: | 200433 *** | 国省代码: | 上海;31 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供一种基于迁移学习和空洞卷积的癫痫状态识别方法,包含步骤:S1、提取每组原始癫痫脑电图信号特定频率下的若干个小波包系数组作为一个特征组;S2、去除特征组中显著相关的小波包系数组,实现对特征组降维;降维后特征组的每个小波包系数均为一个特征值;S3、标准化处理从若干组原始癫痫脑电图信号提取的所有特征值;S4、将经标准化处理的的所有特征值作为测试数据集,将现有癫痫脑电图信号特征数据库中的特征作为训练数据集;通过改进的CMJAE迁移学习方法实现跨领域知识迁移,并通过二维空洞卷积神经网络作为分类器,迭代获取测试数据集的分类结果;S5、采用十折交叉验证法,验证分类准确性。 | ||
搜索关键词: | 一种 基于 迁移 学习 空洞 卷积 癫痫 状态 识别 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于复旦大学,未经复旦大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910043745.9/,转载请声明来源钻瓜专利网。