[发明专利]一种基于用户社区和评分联合社区的推荐方法有效
申请号: | 201910048924.1 | 申请日: | 2019-01-18 |
公开(公告)号: | CN109918562B | 公开(公告)日: | 2022-10-18 |
发明(设计)人: | 文凯;朱传亮;易冰 | 申请(专利权)人: | 重庆邮电大学;重庆信科设计有限公司 |
主分类号: | G06F16/9535 | 分类号: | G06F16/9535;G06Q30/06 |
代理公司: | 重庆市恒信知识产权代理有限公司 50102 | 代理人: | 刘小红;陈栋梁 |
地址: | 400065 重*** | 国省代码: | 重庆;50 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明请求保护一种基于用户社区和评分联合社区的推荐方法。首先基于用户间的社交关系和评分数据获取用户间的信任关系和用户间的相似关系,从而得出用户间的混合相似度值;然后根据混合相似度的值对用户进行k‑means聚类操作,得到用户的社区;其次根据评分矩阵的评分模式利用概率的方法对评分矩阵中的用户和商品进行联合聚类;最后面向用户‑物品的联合社区结构利用矩阵分解技术,并融入用户社区结构进行推荐。本发明能够充分利用社区内部用户的高度相关性以及矩阵分解技术的高精度性,能够在保证不错的推荐准确率的同时提高推荐效率。 | ||
搜索关键词: | 一种 基于 用户 社区 评分 联合 推荐 方法 | ||
【主权项】:
1.一种基于用户社区和评分联合社区的推荐方法,其特征在于,包括以下步骤:1)、首先,基于用户间的社交关系数据得到用户间的信任度,基于用户间的评分数据得到用户间的相似度,从而得出用户间的混合相似度值;2)、然后根据混合相似度的值对用户采用改进的K‑means聚类操作,改进k‑means聚类操作改进主要在于对用户成为专家的可能性进行评估,寻找专家值最大的K个用户作为初始的聚类中心,最后得到用户聚类簇;3)、其次,根据评分矩阵的评分模式利用概率的方法对评分矩阵中的用户和商品进行联合聚类,得到评分矩阵联合聚类簇;4)、最后面向用户‑物品的联合社区结构利用矩阵分解技术,并融合用户聚类簇和评分矩阵联合聚类簇进行用户社区结构进行推荐。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆邮电大学;重庆信科设计有限公司,未经重庆邮电大学;重庆信科设计有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910048924.1/,转载请声明来源钻瓜专利网。