[发明专利]一种混合优化BP神经网络的湖泊水质预测模型构建方法在审
申请号: | 201910055480.4 | 申请日: | 2019-01-21 |
公开(公告)号: | CN109740286A | 公开(公告)日: | 2019-05-10 |
发明(设计)人: | 闫健卓;徐宗宝 | 申请(专利权)人: | 北京工业大学 |
主分类号: | G06F17/50 | 分类号: | G06F17/50;G06N3/08 |
代理公司: | 北京思海天达知识产权代理有限公司 11203 | 代理人: | 沈波 |
地址: | 100124 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种混合优化BP神经网络的湖泊水质预测模型构建方法,首先从Oracle数据库中导出某市地表水的基本信息与水质监测数据,并用VBA语言将数据格式调整正确。然后使用SPSS删除数据空缺较多的行。完成预处理之后,再根据水环境知识筛选出实验相关的水质指标参数,接着分别利用BP神经网络、PSO‑BP神经网络、GA‑BP神经网络和GA‑PSO‑BP神经网络对水质指标参数预测进行模型构建,最后运用评估方法对构建模型进行评估。通过结合不同算法构建方法,充分考虑了各种算法的优缺点,结果表明基于遗传算法GA和粒子群算法PSO混合优化的BP神经网络模型能够提高水质指标参数预测准确率。 | ||
搜索关键词: | 水质指标 构建 参数预测 湖泊水质 预测模型 预处理 优化 数据格式调整 水质监测数据 粒子群算法 遗传算法GA 基本信息 模型构建 删除数据 算法构建 知识筛选 水环境 准确率 导出 评估 算法 地表水 空缺 并用 语言 | ||
【主权项】:
1.一种混合优化BP神经网络时间序列预测模型构建方法,其特征在于:该方法包括如下步骤,步骤1:从水质检测数据库中导出某市地表水的基本信息与水质监测数据,查询出实验湖泊数据进行时间序列排序以Excel表形式导出并保存;步骤2:将导出的湖泊水质数据进行预处理,包括异常值检测和空缺值填充,根据水环境知识,选择合适的水质参数,整理出符合实验要求的数据;步骤3:利用经典的BP神经网络构建水质预测模型,再分别用遗传算法和粒子群算法对BP神经网络进行优化,最后提出基于遗传算法和粒子群算法相结合的混合优化BP神经网络的湖泊水质时间序列预测模型,根据性能指标检验模型预测结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京工业大学,未经北京工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910055480.4/,转载请声明来源钻瓜专利网。