[发明专利]一种基于行车预测场和BP神经网络的智能车辆驾驶行为拟人化决策方法有效
申请号: | 201910071774.6 | 申请日: | 2019-01-25 |
公开(公告)号: | CN109726804B | 公开(公告)日: | 2023-06-13 |
发明(设计)人: | 蔡英凤;邰康盛;刘擎超;梁军;陈小波;李祎承;何友国;陈龙;唐斌;王海 | 申请(专利权)人: | 江苏大学 |
主分类号: | G06N3/0475 | 分类号: | G06N3/0475;G06N3/084 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 212013 江*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: |
本发明公开了一种基于行车预测场和BP神经网络的智能车辆驾驶行为拟人化决策方法,步骤1:将周边车辆行为根据横向与纵向两个方面组合划分,划分为9个典型行为bi,拟合每个车辆行为b |
||
搜索关键词: | 一种 基于 行车 预测 bp 神经网络 智能 车辆 驾驶 行为 拟人化 决策 方法 | ||
【主权项】:
1.一种基于行车预测场和BP神经网络的智能车辆驾驶行为拟人化决策方法,其特征在于,包括如下步骤:步骤1:将周边车辆行为根据横向与纵向两个方面组合划分,离散化划分为9个典型行为bi,拟合每个车辆行为bi对应的相似性轨迹,设目标车辆依照相似性轨迹行驶过的区域为步骤2:取智能车辆当前车道的前后方车辆与相邻车道的前后方车辆作为其周围车辆,每辆交通环境参与车使用车载的GPS与IMU联合定位系统实时获取每个时刻自车的位置(x,y)、速度(Vx,Vy)、加速度(ax,ay);步骤3:根据相似性轨迹行驶过的区域为以及周边车辆的状态信息,建立行车预测场,包含安全预测场ES,效率预测场EE,驾驶舒适预测场EC;步骤4:智能车辆依据实时获取各行为bi在行车预测场下的子预测场场强和,并归一化处理后作为x向量输入训练好的BP神经网络驾驶行为决策模型,输出y向量解码后得出最合理的驾驶行为决策结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于江苏大学,未经江苏大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910071774.6/,转载请声明来源钻瓜专利网。