[发明专利]一种基于快速多图融合学习的立体视觉对象识别系统有效
申请号: | 201910071913.5 | 申请日: | 2019-01-25 |
公开(公告)号: | CN109829413B | 公开(公告)日: | 2020-11-06 |
发明(设计)人: | 高跃;林浩杰;张子昭 | 申请(专利权)人: | 清华大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 北京律谱知识产权代理事务所(普通合伙) 11457 | 代理人: | 黄云铎 |
地址: | 100084*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本申请公开了一种基于快速多图融合学习的立体视觉对象识别系统,该系统包括:构建模块,计算模块以及生成模块;构建模块用于根据数据库中的图像数据,分别构建数据库的至少两个数据模态的图和图矩阵;计算模块用于根据图矩阵,计算数据库对应数据模态的概率转移矩阵,计算模块还用于根据一个数据模态的图和另一个数据模态的概率转移矩阵,计算数据库对应数据模态的第一标签矩阵;生成模块用于根据至少两个数据模态的第一标签矩阵,对数据库中的未标记图像数据进行标记,生成并发送立体视觉对象识别结果。通过本申请中的技术方案,实现了不同模态数据的融合,提高不同模态数据中信息的利用率,优化了标签预测的可靠性和准确性。 | ||
搜索关键词: | 一种 基于 快速 融合 学习 立体 视觉 对象 识别 系统 | ||
【主权项】:
1.一种基于快速多图融合学习的立体视觉对象识别系统,其特征在于,该系统包括:构建模块,计算模块以及生成模块;所述构建模块用于根据数据库中的图像数据,分别构建所述数据库的至少两个数据模态的图和图矩阵;所述计算模块用于根据所述图矩阵,计算所述数据库对应数据模态的概率转移矩阵,所述计算模块还用于根据一个数据模态的所述图和另一个数据模态的所述概率转移矩阵,计算所述数据库对应数据模态的第一标签矩阵;所述生成模块用于根据至少两个数据模态的所述第一标签矩阵,对所述数据库中的未标记图像数据进行标记,生成并发送立体视觉对象识别结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于清华大学,未经清华大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910071913.5/,转载请声明来源钻瓜专利网。