[发明专利]一种航空器位置预测的方法及装置有效
申请号: | 201910072981.3 | 申请日: | 2019-01-25 |
公开(公告)号: | CN109814101B | 公开(公告)日: | 2020-11-20 |
发明(设计)人: | 高占春;蒋砚军;华健 | 申请(专利权)人: | 北京邮电大学 |
主分类号: | G01S13/91 | 分类号: | G01S13/91;G01S7/41;G06N3/08 |
代理公司: | 北京柏杉松知识产权代理事务所(普通合伙) 11413 | 代理人: | 李欣;项京 |
地址: | 100876 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明实施例提供了航空器位置预测的方法及装置,包括:获取航空器的前k个时刻的位置数据,将前k个时刻的位置数据输入到神经网络NN1中,输出符合航空器当前运动状态的运动状态模型的模型类型,按照模型类型,使用前m+1个时刻的位置数据,计算运动状态模型的模型参数,得到运动状态模型,基于符合航空器当前运动状态的运动状态模型,计算下一时刻航空器可能处于的位置,作为航空器的位置预测值;应用本发明实施例,通过使用神经网络NN1快速准确地选择最合适的运动状态方程,解决了使用传统卡尔曼滤波算法时运动状态方程更新周期长的问题,使得航空监控系统能够准确地监视到航空器的位置信息。与现有技术相比,提高了航空器位置预测的准确度。 | ||
搜索关键词: | 一种 航空器 位置 预测 方法 装置 | ||
【主权项】:
1.一种航空器位置预测方法,其特征在于,包括:获得航空器的前k个时刻的位置数据;将前k个时刻的所述位置数据输入到神经网络NN1中,输出符合所述航空器当前运动状态的运动状态模型的模型类型,其中,所述神经网络NN1为基于第一样本数据进行训练得到的,所述第一样本数据包括样本航空器的样本位置数据,以及所述样本航空器的与所述样本位置数据对应的已知运动状态模型;按照所述模型类型,使用前m+1个时刻的位置数据,计算所述运动状态模型的模型参数,得到所述运动状态模型;基于符合所述航空器当前运动状态的所述运动状态模型,计算下一时刻所述航空器可能处于的位置,作为所述航空器的位置预测值。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京邮电大学,未经北京邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910072981.3/,转载请声明来源钻瓜专利网。