[发明专利]一种基于视觉-属性的X射线安检违禁品识别方法有效
申请号: | 201910077811.4 | 申请日: | 2019-01-28 |
公开(公告)号: | CN110018524B | 公开(公告)日: | 2020-12-04 |
发明(设计)人: | 赵才荣;陈康;傅佳悦 | 申请(专利权)人: | 同济大学 |
主分类号: | G01V5/00 | 分类号: | G01V5/00;G01N23/04 |
代理公司: | 上海科律专利代理事务所(特殊普通合伙) 31290 | 代理人: | 叶凤 |
地址: | 200092 *** | 国省代码: | 上海;31 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及计算机视觉领域,采用深度学习框架,具体涉及一种基于视觉—属性的X射线安检违禁品识别方法,包括以下步骤:1)采集标注训练样本,获取原始的单通道16位高、低能X射线灰度图,经过基于视觉‑属性的预处理,得到16位三通道彩色图像作为数据集,用于模型训练和测试;2)将训练集图像输入网络中进行训练:使用darknet网络从输入图像中提取特征,输出特征图谱;采用yolo层在多个尺度对特征图谱进行边界框预测。经过训练,该模型支持对已标注的12类违禁品进行识别;3)将测试集图像输入模型中进行测试,输出识别结果,并在输入图像上标记违禁品显示;根据IoU和R‑P曲线计算得到mAP。与现有技术相比,本发明具有高准确性、高智能化、高通配性等优点。 | ||
搜索关键词: | 一种 基于 视觉 属性 射线 安检 违禁品 识别 方法 | ||
【主权项】:
1.一种基于视觉‑属性的X射线安检违禁品识别方法,其特征在于,包括以下步骤:1)采集标注训练样本,获取原始的单通道16位高、低能X射线灰度图,经过基于视觉‑属性的预处理,得到16位三通道彩色图像作为数据集,用于模型训练和测试;2)将训练集图像输入网络中进行训练:使用darknet网络从输入图像中提取特征,输出特征图谱;采用yolo层在多个尺度对特征图谱进行边界框预测。使用darknet网络的输出作为yolo层的输入,得到检测模型。使用在Imagenet上预训练的参数初始化该模型,经过端到端的训练,得到支持安检危险品检测的最终识别模型;3)将测试集图像输入模型中进行测试,输出识别结果,并在输入图像上标记违禁品显示;根据IoU和R‑P曲线计算得到mAP。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于同济大学,未经同济大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910077811.4/,转载请声明来源钻瓜专利网。