[发明专利]基于多模态3D卷积神经网络的动态手势识别方法及系统有效

专利信息
申请号: 201910080484.8 申请日: 2019-01-28
公开(公告)号: CN109871781B 公开(公告)日: 2020-11-06
发明(设计)人: 杨明强;李杰;王德强;刘玉鹏;程琦 申请(专利权)人: 山东大学
主分类号: G06K9/00 分类号: G06K9/00;G06K9/46;G06K9/62;G06N3/04
代理公司: 济南圣达知识产权代理有限公司 37221 代理人: 黄海丽
地址: 250100 山*** 国省代码: 山东;37
权利要求书: 查看更多 说明书: 查看更多
摘要: 本公开公开了基于多模态3D卷积神经网络的动态手势识别方法及系统,包括:对获取的实际视频数据进行分帧处理,分为若干帧图像;从所述若干帧图像中提取若干关键帧图像;对每个关键帧图像进行灰度化处理得到灰度图像,对每个关键帧图像的灰度图像进行Gabor变换得到gabor图像,对每个关键帧图像的灰度图像进行边缘提取得到边缘图像;将每个关键帧图像所对应的灰度图像输入到预先训练好的第一、第二和第三3D卷积神经网络,分别输出第一、第二和第三分类结果;第一、第二和第三3D卷积神经网络的输出端同时连接到一个输出层,所述输出层对第一、第二和第三分类结果进行融合,输出最终的分类结果。
搜索关键词: 基于 多模态 卷积 神经网络 动态 手势 识别 方法 系统
【主权项】:
1.基于多模态3D卷积神经网络的动态手势识别方法,其特征是,包括:对获取的实际视频数据进行分帧处理,分为若干帧图像;从所述若干帧图像中提取若干关键帧图像;对每个关键帧图像进行灰度化处理得到灰度图像,对每个关键帧图像的灰度图像进行Gabor变换得到gabor图像,对每个关键帧图像的灰度图像进行边缘提取得到边缘图像;将每个关键帧图像所对应的灰度图像输入到预先训练好的第一3D卷积神经网络,输出第一分类结果;将每个关键帧图像所对应的gabor图像输入到预先训练好的第二3D卷积神经网络,输出第二分类结果;将每个关键帧图像所对应的边缘图像输入到预先训练好的第三3D卷积神经网络,输出第三分类结果;第一、第二和第三3D卷积神经网络的输出端同时连接到一个输出层,所述输出层对第一、第二和第三分类结果进行融合,输出最终的分类结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于山东大学,未经山东大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910080484.8/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top