[发明专利]一种基于神经网络的中文分词模型的训练方法有效

专利信息
申请号: 201910085499.3 申请日: 2019-01-29
公开(公告)号: CN109800298B 公开(公告)日: 2023-06-16
发明(设计)人: 李正华;朱运;黄德朋;张民;陈文亮 申请(专利权)人: 苏州大学
主分类号: G06N3/08 分类号: G06N3/08;G06N3/045;G06N3/0442;G06F40/216;G06F40/284
代理公司: 北京集佳知识产权代理有限公司 11227 代理人: 罗满
地址: 215104 *** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于神经网络的中文分词模型的训练方法,为多种分词规范设置相应的语料特征向量,在获取多种分词规范的训练语料后,根据字的嵌入向量和语料特征向量确定字的向量表示,最后将文本句中各个字的向量表示输入中文分词模型,得到预测结果并据此调整模型参数,以完成训练。可见,该方法无需改变模型结构,只需在字的向量表示中增加相应的语料特征向量,并利用该向量表示对模型进行训练,不仅实现了扩充训练语料的目的,而且能够让模型学习不同分词规范之间的共性,从而达到提升单一分词规范下的分词性能的目的。此外,本发明还提供了一种基于神经网络的中文分词模型的训练装置、设备及计算机可读存储介质,其作用与上述方法相对应。
搜索关键词: 一种 基于 神经网络 中文 分词 模型 训练 方法
【主权项】:
1.一种基于神经网络的中文分词模型的训练方法,其特征在于,包括:获取多种分词规范的训练语料,其中,所述训练语料包括文本句以及与所述文本句对应的标签序列;根据所述文本句中多个字的嵌入向量以及语料特征向量,得到各个字的向量表示,其中,所述语料特征向量用于表明所述文本句为何种分词规范的训练语料;将所述文本句中各个字的向量表示输入预先创建的中文分词模型,预测得到所述文本句的标签序列;根据预测得到的标签序列以及在训练语料中与所述文本句对应的标签序列,对所述中文分词模型的模型参数进行调整,在达到预设条件时完成训练。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于苏州大学,未经苏州大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910085499.3/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top